Skip to main content
Log in

Effect of Rolling Temperature and Annealing on Grain Refinement in TiNiCu Shape Memory Alloys

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Grain size refinement is a highly desirable characteristic in TiNi-based shape memory alloys (SMA) because they prevent the loss of recoverable strain. The current study elucidates the role of rolling temperature on grain refinement in TiNiCu shape memory alloy. The control of deformation temperature, ranging from room temperature to cryogenic temperatures, allowed for control over the stored energy in the rolled samples. Observations revealed that the as-rolled samples stabilized the deformation-induced austenite phase below the martensite finish temperatures, effectively inhibiting the phase transformation. Consequently, this resulted in constant electrical resistivity values. However, subjecting the samples to heat treatment under similar conditions led to varying grain sizes, ranging from a few hundred nm to tens of microns. This subsequently restored the B2 → B19′ transformation. These findings signify the importance of rolling temperature on grain refinement in TiNiCu SMAs. Lower rolling temperature correlated with coarser grain size due to higher stored energy driving the early recrystallization and grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data used in the current study are part of an ongoing project and therefore could not be shared at the moment.

References

  1. A. Nespoli and S. Besseghini, A Complete Thermo-Mechanical Study of a NiTiCu Shape Memory Alloy Wire, J. Therm. Anal. Calorim., 2011, 103(3), p 821–826.

    Article  CAS  Google Scholar 

  2. K.N. Lin, S.K. Wu, and L.M. Wu, Martensitic Transformation of Cold-Rolled and Annealed Ti50Ni40Cu10 Shape Memory Alloy, Mater. Trans., 2009, 50(11), p 2637–2642.

    Article  CAS  Google Scholar 

  3. K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678.

    Article  CAS  Google Scholar 

  4. T. Waitz, V. Kazykhanov, and H.P. Karnthaler, Martensitic Phase Transformations in Nanocrystalline NiTi Studied by TEM, Acta Mater., 2004, 52(1), p 137–147.

    Article  CAS  Google Scholar 

  5. M. Peterlechner, T. Waitz, and H.P. Karnthaler, Nanocrystallization of NiTi Shape Memory Alloys Made Amorphous by High-Pressure Torsion, Scr. Mater., 2008, 59(5), p 566–569.

    Article  CAS  Google Scholar 

  6. Y. Ren, A. Shuitcev, D.V. Gunderov, L. Li, R.Z. Valiev, and Y.X. Tong, The Role of Temperature in the Microstructural Evolution of HPT-Processed NiTiHf High-Temperature Shape Memory Alloy, Mater. Lett., 2022, 322(May), p 18–21.

    Google Scholar 

  7. Y.X. Tong, B. Guo, F. Chen, B. Tian, L. Li, Y.F. Zheng, E.A. Prokofiev, D.V. Gunderov, and R.Z. Valiev, Thermal Cycling Stability of Ultrafine-Grained TiNi Shape Memory Alloys Processed by Equal Channel Angular Pressing, Scr. Mater., 2012, 67(1), p 1–4.

    Article  CAS  Google Scholar 

  8. B. Kockar, I. Karaman, J.I. Kim, and Y. Chumlyakov, A Method to Enhance Cyclic Reversibility of NiTiHf High Temperature Shape Memory Alloys, Scr. Mater., 2006, 54(12), p 2203–2208.

    Article  CAS  Google Scholar 

  9. A.O. Moghaddam, M. Ketabchi, and Y. Afrasiabi, Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy, J. Mater. Eng. Perform., 2014, 23(12), p 4429–4435.

    Article  CAS  Google Scholar 

  10. A. Shamsolhodaei, A. Zarei-Hanzaki, and M. Moghaddam, Structural and Functional Properties of a Semi Equiatomic NiTi Shape Memory Alloy Processed by Multi-Axial Forging, Mater. Sci. Eng. A, 2017, 700(February), p 1–9. https://doi.org/10.1016/j.msea.2017.04.011

    Article  CAS  Google Scholar 

  11. X.B. Shi, F.M. Guo, J.S. Zhang, H.L. Ding, and L.S. Cui, Grain Size Effect on Stress Hysteresis of Nanocrystalline NiTi Alloys, J. Alloys Compd., 2016, 688, p 62–68. https://doi.org/10.1016/j.jallcom.2016.07.168

    Article  CAS  Google Scholar 

  12. S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall. Trans. A Phys. Metall. Mater. Sci., 1986, 17(1), p 115–120.

    Article  Google Scholar 

  13. J. Koike, D.M. Parkin, and M. Nastasi, Crystal-To-Amorphous Transformation of NiTi Induced by Cold Rolling, J. Mater. Res., 1990, 5(7), p 1414–1418.

    Article  CAS  Google Scholar 

  14. P. Liu, Q. Sun, and M. Xia, Grain Size Effects on Young’s Modulus and Hardness of Nanocrystalline NiTi Shape Memory Alloy, Adv. Struct. Mater., 2017, 73, p 191–201. https://doi.org/10.1007/978-3-319-53306-3

    Article  Google Scholar 

  15. Y. Li, J.Y. Li, M. Liu, Y.Y. Ren, F. Chen, G.C. Yao, and Q.S. Mei, Evolution of Microstructure and Property of NiTi Alloy Induced by Cold Rolling, J. Alloys Compd., 2015, 653, p 156–161.

    Article  CAS  Google Scholar 

  16. M. Karimzadeh, M.R. Aboutalebi, M.T. Salehi, S.M. Abbasi, and M. Morakabati, Effects of Thermomechanical Treatments on the Martensitic Transformation and Critical Stress of Ti-50.2 at.% Ni Alloy, J. Alloys Compd., 2015, 637, p 171–177. https://doi.org/10.1016/j.jallcom.2015.02.195

    Article  CAS  Google Scholar 

  17. T. Leitner, I. Sabirov, R. Pippan, and A. Hohenwarter, The Effect of Severe Grain Refinement on the Damage Tolerance of a Superelastic NiTi Shape Memory Alloy, J. Mech. Behav. Biomed. Mater., 2017, 71(November 2016), p 337–348. https://doi.org/10.1016/j.jmbbm.2017.03.020

    Article  CAS  Google Scholar 

  18. E.M. Sharifi, F. Karimzadeh, and A. Kermanpur, The Effect of Cold Rolling and Annealing on Microstructure and Tensile Properties of the Nanostructured Ni50Ti50 Shape Memory Alloy, Mater. Sci. Eng. A, 2014, 607, p 33–37.

    Article  CAS  Google Scholar 

  19. H. Zhang, X. Li, and X. Zhang, Grain-Size-Dependent Martensitic Transformation in Bulk Nanocrystalline TiNi under Tensile Deformation, J. Alloys Compd., 2012, 544, p 19–23. https://doi.org/10.1016/j.jallcom.2012.08.014

    Article  CAS  Google Scholar 

  20. T. Waitz and H.P. Karnthaler, Martensitic Transformation of NiTi Nanocrystals Embedded in an Amorphous Matrix, Acta Mater., 2004, 52(19), p 5461–5469.

    Article  CAS  Google Scholar 

  21. H. Nakayama, K. Tsuchiya, and M. Umemoto, Crystal Refinement and Amorphisation by Cold Rolling in TiNi Shape Memory Alloys, Scr. Mater., 2001, 44(8–9), p 1781–1785.

    Article  CAS  Google Scholar 

  22. J. Frenzel, J.A. Burow, E.J. Payton, S. Rezanka, and G. Eggeler, Improvement of NiTi Shape Memory Actuator Performance through Ultra-Fine Grained and Nanocrystalline Microstructures, Adv. Eng. Mater., 2011, 13(4), p 256–268.

    Article  CAS  Google Scholar 

  23. H.F. López, Transformation Induced Toughening in a Ni-Ti52 Shape Memory Alloy, Mater. Lett., 2001, 51(2), p 144–150.

    Article  Google Scholar 

  24. H.F. Lopez, A. Salinas, and H. Calderón, Plastic Straining Effects on the Microstructure of a Ti-Rich NiTi Shape Memory Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2001, 311(32), p 717–729.

    Article  Google Scholar 

  25. H.C. Lin and S.K. Wu, Determination of Heat of Transformation in a Cold-Rolled Martensitic Tini Alloy, Metall. Trans. A, 1993, 24(2), p 293–299.

    Article  Google Scholar 

  26. H. Sehitoglu, Y. Wu, and E. Ertekin, Elastocaloric Effects in the Extreme, Scr. Mater., 2018, 148, p 122–126.

    Article  CAS  Google Scholar 

  27. M. Nishida, T. Nishiura, H. Kawano, and T. Inamura, Self-Accommodation of B19 ′ Martensite in Ti-Ni Shape Memory Alloys-Part I. Morphological and Crystallographic Studies of the Variant Selection Rule, Philos. Mag., 2012, 92(17), p 2215–2233.

    Article  CAS  Google Scholar 

  28. H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao, The Effects of Cold Rolling on the Martensitic Transformation of an Equiatomic TiNi Alloy, Acta Metall. Mater., 1991, 39(9), p 2069–2080.

    Article  CAS  Google Scholar 

  29. K.S. Suresh, D.I. Kim, S.K. Bhaumik, and S. Suwas, Evolution and Stability of Phases in a High Temperature Shape Memory Alloy Ni49.4Ti38.6Hf12, Intermetallics, 2014, 44, p 18–25. https://doi.org/10.1016/j.intermet.2013.08.005

    Article  CAS  Google Scholar 

  30. M. Pattabi and M.S. Murari, Effect of Cold Rolling on Phase Transformation Temperatures of NiTi Shape Memory Alloy, J. Mater. Eng. Perform., 2015, 24(2), p 556–564.

    Article  CAS  Google Scholar 

  31. K. Tsuchiya, M. Inuzuka, D. Tomus, A. Hosokawa, H. Nakayama, K. Morii, Y. Todaka, and M. Umemoto, Martensitic Transformation in Nanostructured TiNi Shape Memory Alloy Formed via Severe Plastic Deformation, Mater. Sci. Eng. A, 2006, 438–440, p 643–648.

    Article  Google Scholar 

  32. A. Sinha, B. Mondal, B.C. Maji, and P.P. Chattopadhyay, Enhanced Shape Recovery in Cryogenically Treated Martensitic Ti-Ni Alloys, Mater. Sci. Eng. A, 2013, 580, p 273–278. https://doi.org/10.1016/j.msea.2013.05.036

    Article  CAS  Google Scholar 

  33. H. Shahmir, M. Nili-Ahmadabadi, M. Mohammadi, Y. Huang, M. Andrzejczuk, M. Lewandowska, and T.G. Langdon, Effect of Cu on Amorphization of a TiNi Alloy during HPT and Shape Memory Effect after Post-Deformation Annealing, Adv. Eng. Mater., 2020, 22(1), p 1–9.

    Article  Google Scholar 

  34. H. Shahmir, M. Nili-Ahmadabadi, Y. Huang, J.M. Jung, H.S. Kim, and T.G. Langdon, Shape Memory Characteristics of a Nanocrystalline TiNi Alloy Processed by HPT Followed by Post-Deformation Annealing, Mater. Sci. Eng. A, 2018, 734(June), p 445–452. https://doi.org/10.1016/j.msea.2018.08.019

    Article  CAS  Google Scholar 

  35. A.I. Tagiltsev, E.Y. Panchenko, Y.I. Chumlyakov, E.E. Timofeeva, and E.S. Marchenko, Two-Way Shape Memory Effect and Viscoelastic Properties in NiTiHf Polycrystals Containing Nanosized Particles, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-07812-w

    Article  Google Scholar 

  36. J. Dadda, H.J. Maier, I. Karaman, and Y.I. Chumlyakov, Cyclic Deformation and Austenite Stabilization in Co35Ni35Al30 Single Crystalline High-Temperature Shape Memory Alloys, Acta Mater., 2009, 57(20), p 6123–6134. https://doi.org/10.1016/j.actamat.2009.08.038

    Article  CAS  Google Scholar 

  37. J. Uchil, K.P. Mohanchandra, K.G. Kumara, and K.K. Mahesh, Study of Critical Dependence of Stable Phases in Nitinol on Heat Treatment Using Electrical Resistivity Probe, Mater. Sci. Eng. A, 1998, 251(1–2), p 58–63.

    Article  Google Scholar 

  38. Z. Deng, Q. Li, Y. Onuki, and Q. Sun, Multifunctional Nanostructured NiTi Alloy with Invar, Elinvar and Rinvar Properties, J. Alloys Compd., 2022, 909, p 164682. https://doi.org/10.1016/j.jallcom.2022.164682

    Article  CAS  Google Scholar 

  39. J. Uchil, K.K. Mahesh, and K.G. Kumara, Electrical Resistivity and Strain Recovery Studies on the Effect of Thermal Cycling under Constant Stress on R-phase in NiTi Shape Memory Alloy, Phys. B Condens. Matter, 2002, 324(1–4), p 419–428.

    Article  CAS  Google Scholar 

  40. T. Hoshiya, F. Takada, Y. Ichihashi, and H.R. Pak, Restoration Phenomena of Neutron-Irradiated TiNi Shape Memory Alloys, Mater. Sci. Eng. A, 1990, 130(2), p 185–191.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Science and Engineering Research Board (SERB), India (Grant no. ECR/2016/000883). Characterization facilities available at the Department of Metallurgical and Materials Engineering (MMED) and the Institute Instrumentation Centre (IIC), IIT Roorkee, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Suresh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varukuti, S.M.R., Chaithanya Kumar, K.N. & Suresh, K.S. Effect of Rolling Temperature and Annealing on Grain Refinement in TiNiCu Shape Memory Alloys. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08825-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08825-1

Keywords

Navigation