Skip to main content
Log in

Reducing Mechanical Anisotropy in Dual-Phase Mg-9Li-1Zn Alloy by Control of Single-Pass Reduction during Asymmetric Rolling

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The reduced processability in Mg-Li alloy through rolling deformation deserves attention. Herein, an asymmetric rolling test is carried out on a of dual-phase Mg-9Li-1Zn alloy using controlled single-pass reduction (SPR). The role of different rolling conditions is observed in terms of the microstructure, texture, and mechanical properties of the alloy. Additionally, finite element simulation analyzed the equivalent strain and shear stress during differential rolling processes. The mechanical anisotropy and recrystallization degree of Mg-Li alloy varied with the applied single-pass deformation. 10% single-pass reduction (SPR10) showed low anisotropy due to the high shear deformation induced by asymmetric rolling. Under the SPR10 condition, the asymmetry of shear stress and equivalent stress in the deformation zone is most obvious. Higher equivalent strain and shear forces can activate the slip system for the two phases, inducing non-basal slip and weakening the basal texture. Of note, high equivalent strain can stimulate dynamic recrystallization (DRX), resulting in refined grains, reduced stress concentration, and enhanced plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research Advances in Magnesium and Magnesium Alloys Worldwide in 2020, J. Magnes. Alloy, 2021, 9(3), p 705–747.

    Article  CAS  Google Scholar 

  2. Z.X. Wu, R. Ahmad, B.L. Yin, S. SandlÖbes, and W.A. Curtin, Mechanistic Origin and Prediction of Enhanced Ductility in Magnesium Alloys, Science, 2018, 359(6374), p 447–452.

    Article  CAS  Google Scholar 

  3. Y. Tang, W.T. Jia, and X. Liu, Precipitation Evolution during Annealing of Mg-Li Alloys, Mater. Sci. Eng. A, 2017, 689, p 332–344.

    Article  CAS  Google Scholar 

  4. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, and Q.M. Peng, What is Going on in Magnesium Alloys?, J. Mater. Sci. Technol., 2018, 34(2), p 245–247.

    Article  Google Scholar 

  5. X. Peng, W.C. Liu, G.H. Wu, H. Ji, and W.J. Ding, Plastic Deformation and Heat Treatment of Mg-Li Alloys: A Review, J. Mater. Sci. Technol., 2022, 99, p 193–206.

    Article  CAS  Google Scholar 

  6. E. Karakulak, A Review Past, Present and Future of Grain Refining of Magnesium Alloys, J. Magnes. Alloy, 2019, 7, p 355–369.

    Article  CAS  Google Scholar 

  7. R. Wu, Y. Yan, G. Wang, and L.E. Murr, Recent Progress in Magnesium–Lithium Alloys, Int. Mater. Rev., 2015, 60(2), p 65–100.

    Article  CAS  Google Scholar 

  8. G.Q. Wu, D.C. Zhao, and L.B. Sun, Microstructure and Mechanical Properties of Wire-Filled Tungsten Argon Arc Welded Joints for LA141 Magnesium-Lithium-Aluminum Alloy, Mater. Today Commun., 2020, 23, p 100881.

    Article  CAS  Google Scholar 

  9. R. Mahmudi, M. Shalbafi, M. Karami, and A.R. Geranmayeh, Effect of Li Content on the Indentation Creep Characteristics of Cast Mg–Li–Zn Alloys, Mater. Des., 2015, 75, p 184–190.

    Article  CAS  Google Scholar 

  10. Q. Su, J. Xu, Y. Li, J. Yoon, D. Shan, B. Guo, and H. Kim, Microstructural Evolution and Mechanical Properties in Superlight Mg-Li Alloy Processed by High-Pressure Torsion, Materials, 2018, 11(4), p 598.

    Article  Google Scholar 

  11. J. Li, L. Jin, F.H. Wang, S. Dong, and J. Dong, Effect of Phase Morphology on Microscopic Deformation Behavior of Mg–Li–Gd Dual-Phase Alloys, Mater. Sci. Eng. A, 2021, 809, p 140871.

    Article  CAS  Google Scholar 

  12. G. Liu, W. Xie, G.B. Wei, Y. Yang, and J.W. Liu, Dynamic Recrystallization Behavior and Corrosion Resistance of a Dual-Phase Mg-Li Alloy, Materials, 2018, 11(3), p 408.

    Article  Google Scholar 

  13. H.Y. Wu, J.C. Yan, H.H. Tsai, C.H. Chiu, G.Z. Zhou, and C.F. Lin, Tensile Flow and Strain-Hardening Behaviors of Dual-Phase Mg-Li-Zn Alloy Thin Sheets, Mater. Sci. Eng. A, 2010, 527(27), p 7197–7203.

    Article  Google Scholar 

  14. C.T. Chang, J.Y. Wang, C.L. Chu, and S. Lee, Mechanical Properties and Microstructures of Various Mg-Li Alloys, Mater. Lett., 2006, 60(27), p p3272-3276.

    Article  Google Scholar 

  15. H.B. Ji, G.C. Yao, and H.B. Li, Microstructure, Cold Rolling, Heat Treatment, and Mechanical Properties of Mg-Li Alloys, Univ. Sci. Technol. Beijing Mineral Metall. Mater., 2008, 15, p 440–443.

    CAS  Google Scholar 

  16. J.H. Wang, R.Z. Wu, J. Feng, J.H. Zhang, L.G. Hou, and M.L. Zhang, Influence of Rolling Strain on Electromagnetic Shielding Property and Mechanical Properties of Dual-Phase Mg-9Li Alloy, Mater Charact, 2019, 157, p 109924.

    Article  CAS  Google Scholar 

  17. L.N. Ma, Y. Yang, G. Zhou, F.J. Ren, H.J. Deng, G.B. Wei, and X.D. Peng, Effect of Rolling Reduction and Annealing Process on Microstructure and Corrosion Behavior of LZ91 Alloy Sheet, Trans. Nonferrous Metals Soc. China, 2020, 30, p 1816–1825.

    Article  CAS  Google Scholar 

  18. X.F. Wang, H. Liu, X.B. Tang, Y.G. Wang, M.X. Guo, and L.Z. Zhuang, Influence of Asymmetric Rolling on the Microstructure, Texture Evolution and Mechanical Properties of Al–Mg–Si Alloy, Mater. Sci. Eng. A, 2022, 844, p 143154.

    Article  CAS  Google Scholar 

  19. W.C. Zhang, X.T. Liu, J.F. Ma, W.K. Wang, W.Z. Chen, Y.X. Liu, and J.L. Yang, Evolution of Microstructure and Mechanical Properties of ZK60 Magnesium Alloy Processed by Asymmetric Lowered-Temperature Rolling, Trans. Nonferrous Metals Soc. China, 2022, 32, p 2877–2888.

    Article  CAS  Google Scholar 

  20. Y. Zou, L.H. Zhang, H.T. Wang, X. Tong, M.L. Zhang, and Z.W. Zhang, Texture Evolution and their Effects on the Mechanical Properties of Duplex Mg–Li Alloy, J. Alloy. Compd., 2016, 669, p 72–78.

    Article  CAS  Google Scholar 

  21. E. Tolouie and R. Jamaati, Asymmetric Cold Rolling: A Technique for Achieving Non-Basal Textures in AZ91 Alloy, Mater. Lett., 2019, 249, p 143–146.

    Article  CAS  Google Scholar 

  22. S.H. Kim, B.S. You, Y.C. Dong, and Y.M. Seo, Texture and Microstructure Changes in Asymmetrically Hot Rolled AZ31 Magnesium Alloy Sheets, Mater. Lett., 2005, 59(29), p 3876–3880.

    Article  CAS  Google Scholar 

  23. T.Y. Kwak and W.J. Kim, Superplastic Behavior of an Ultrafine-Grained Mg-13Zn-1.55Y Alloy with a High Volume Fraction of Icosahedral Phases Prepared by High-Ratio Differential Speed Rolling, J. Mater. Sci. Technol., 2017, 33(9), p 919–925.

    Article  CAS  Google Scholar 

  24. G. Liu, W. Xie, A. Hadadzadeh, G.B. Wei, Z.D. Ma, J.W. Liu, Y. Yang, W.D. Xie, X.D. Peng, and M. Wells, Hot Deformation Behavior and Processing Map of a Superlight Dual-Phase Mg–Li Alloy, J. Alloy. Compd., 2018, 766, p 460–469.

    Article  CAS  Google Scholar 

  25. Y.S. Shi, Q.H. Shu, S. Zhao, H.M. Zou, and S.H. Jin, Effect of Controlled Rolling Temperature on Microstructure and Properties of Mg-9Li-1Zn Alloy Sheet, J. Alloy. Comp., 2020, 835, p 155296.

    Article  CAS  Google Scholar 

  26. C.Y. Xu, H.T. Lan, and J.P. Zhu, Research on the Constitutive Equation and Processing Map of Ultralight Magnesium-Lithium Alloy LZ91, ChinJNonferus Met., 2020, 10(9), p 14–20.

    Google Scholar 

  27. F. Bachmann, R. Hielscher, and H. Schaeben, Texture Analysis with MTEX-Free and Open Source Software Toolbox, Solid State Phenom., 2010, 160, p 63–68.

    Article  CAS  Google Scholar 

  28. W.J. Kim, M.J. Kim, and J.Y. Wang, Ultrafine-Grained Mg–9Li–1Zn Alloy Sheets Exhibiting Low Temperature Superplasticity, Mater. Sci. Eng. A, 2009, 516, p 17–22.

    Article  Google Scholar 

  29. W. Liu, X. Liu, C. Tang, W. Yao, Y. Xiao, and X. Liu, Microstructure and Texture Evolution in LZ91 Magnesium Alloy during Cold Rolling, J. Magnes. Alloys, 2018, 6, p 77–82.

    Article  Google Scholar 

  30. X.Y. Li, F. Guo, Y.L. Ma, L.Y. Jiang, H.L. Lai, H.D. Liu, D.F. Zhang, and R.S. Pei, Rolling Texture Development in a Dual-Phase Mg-Li Alloy: The Role of Temperature, J. Magnes. Alloys, 2021 https://doi.org/10.1016/j.jma.2021.10.005

    Article  Google Scholar 

  31. F. Guo, L. Liu, Y. Ma, L. Jiang, Y. Zhang, D. Zhang, and F.S. Pan, Slip Behavior and its Effect on Rolling Texture Development in a Dual-Phase Mg–Li Alloy, J. Alloy. Compd., 2020, 813, p 152117.

    Article  CAS  Google Scholar 

  32. Y. Zou, L.H. Zhang, Y. Li, H.T. Wang, and J.B. Liu, Texture Evolution and their Effects on the Mechanical Properties of Duplex Mg–Li Alloy, J. Alloy. Compd., 2016, 669, p 72–78.

    Article  CAS  Google Scholar 

  33. Y.G. Ko and K. Hamad, Structural Features and Mechanical Properties of AZ31 Mg Alloy Warm-Deformed by Differential Speed Rolling, J. Alloy. Comp., 2018, 744, p 96–103.

    Article  CAS  Google Scholar 

  34. X.P. Li, F. Wang, X.H. Li, G.Y. Tang, and J. Zhu, Improvement of Formability of Mg–3Al–1Zn Alloy Strip by Electroplastic-Differential Speed Rolling, Mater. Sci. Eng. A, 2014, 618, p 500–504.

    Article  CAS  Google Scholar 

  35. J.H. Cho, H.W. Kim, S.B. Kang, and T.S. Han, Bending Behavior, and Evolution of Texture and Microstructure during Differential Speed Warm Rolling of AZ31B Magnesium Alloys, Acta Mater., 2011, 59(14), p 5638–5651.

    Article  CAS  Google Scholar 

  36. Y.G. Ko, U.M. Chaudry, and K. Hamad, Microstructure and Mechanical Properties of AA6061 Alloy Deformed by Differential Speed Rolling, Mater. Lett., 2020, 259, p 126870.

    Article  CAS  Google Scholar 

  37. Y.G. Ko and K. Hamad, Microstructure Stability and Mechanical Properties of Ultrafine Grained 5052 Al Alloy Fabricated by Differential Speed Rolling, Mater. Sci. Eng. A, 2018, 733, p 24–27.

    Article  CAS  Google Scholar 

  38. W.J. Kim, Y.G. Lee, M.J. Lee, J.Y. Wang, and Y.B. Park, Exceptionally High Strength in Mg–3Al–1Zn Alloy Processed by High-Ratio Differential Speed Rolling, Scr. Mater., 2011, 65(12), p 1105–1108.

    Article  CAS  Google Scholar 

  39. Y. Yang, M. Li, H. Deng, F. Ren, H. Zhang, B. Jiang, and F. Pan, Effects of Annealing Temperature on Microstructure and Mechanical Properties of LZ91 Alloy, Mater. Sci. Technol., 2020, 36(18), p 2010–2017.

    Article  CAS  Google Scholar 

  40. J. Wang, X.H. Liu, and X.K. Sun, Study on the Relationship Between Asymmetrical Rolling Deformation Zone Configuration and Rolling Parameters, Int. J. Mech. Sci., 2020, 187, p 105905.

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China [No. 51564032] and the Analysis and testing foundation of Kunming University of Science and Technology [2021M20202230047]

Author information

Authors and Affiliations

Authors

Contributions

JL contributed to Investigation, Methodology, Data curation, Writing–review & editing. HH contributed to Investigation, Methodology, Data curation. LL contributed to Software support, Methodology, Visualization. JW contributed to Resources, Investigation, Data curation, Funding acquisition. ZF contributed to Investigation, Methodology, Data curation. BX contributed to Validation, Visualization.

Corresponding author

Correspondence to Junli Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hu, H., Li, L. et al. Reducing Mechanical Anisotropy in Dual-Phase Mg-9Li-1Zn Alloy by Control of Single-Pass Reduction during Asymmetric Rolling. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08802-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08802-8

Keywords

Navigation