Skip to main content
Log in

Effect of Curing Temperature on Mechanical Strength and Thermal Properties of Hydraulic Limestone Powder Concrete

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the effect of curing temperature on mechanical strength and thermal properties of hydraulic limestone powder (LS) concrete is investigated. The hydration products and microstructure of hydraulic LS concrete are characterized through X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP). The results indicate that the mechanical strength decreases with an increase in the LS dosage. The largest mechanical strength at 3 and 7 d is recorded at the curing temperature of 50 °C, that at 28 and 90 d is obtained at 20 °C, whereas the lowest mechanical strength from 3 to 90 d is obtained at 5 °C. The thermal conductivity and thermal diffusivity of LS concrete are positively correlated with the compressive strength. The adiabatic temperature rise decreases with an increase in the LS dosage, and the largest temperature rise is obtained at the initial temperature of 5 °C, followed by those obtained at 20 and 50 °C. The longest fibrous C-S-H and thickest plate Ca(OH)2 with the largest size at 90 d is obtained at a curing temperature of 50 °C, followed by those obtained at 20 and 5 °C. The MIP results indicate that the largest total amount of gel pores and medium capillary pores at 90 d are obtained at a curing temperature of 20 °C, followed by 50 and 5 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Gong, X. Zhou, L. Ji, W. Dai, L. Lu, and X. Cheng, Effects of Limestone Powders on Pore Structure and Physiological Characteristics of Planting Concrete with Sulfoaluminate Cement, Constr. Build. Mater., 2018, 162, p 314–320.

    Article  CAS  Google Scholar 

  2. P.P. Li, H.J.H. Brouwers, W. Chen, and Q. Yu, Optimization and Characterization of High-Volume Limestone Powder in sustainable Ultra-high Performance Concrete, Constr. Build. Mater., 2020, 242, p 118112.

    Article  CAS  Google Scholar 

  3. F. Deschner, B. Lothenbach, F. Winnefeld, and J. Neubauer, Effect of Temperature on the Hydration of Portland Cement Blended with Siliceous Fly Ash, Cem. Concr. Res., 2013, 52, p 169–181.

    Article  CAS  Google Scholar 

  4. A.A. Elgalhud, R.K. Dhir, and G. Ghataora, Limestone Addition Effects on Concrete Porosity, Cement Concr. Compos., 2016, 72, p 222–234.

    Article  CAS  Google Scholar 

  5. L. Fan, Z. Zhang, Y. Yu, P. Li, and T. Cosgrove, Effect of Elevated Curing Temperature on Ceramsite Concrete Performance, Constr. Build. Mater., 2017, 153, p 423–429.

    Article  Google Scholar 

  6. Y. Liu, S. Fu, J. Gao, and Y. Yang, Prediction for Temperature Evolution and Compressive Strength of Non-Mass Concrete with Thermal Insulation Curing in Cold Weather, J. Build. Eng., 2020, 32, p 101737.

    Article  Google Scholar 

  7. V. Tydlitát, T. Matas, and R. Černý, Effect of w/c and Temperature on the Early-Stage Hydration Heat Development in Portland-Limestone Cement, Constr. Build. Mater., 2014, 50, p 140–147.

    Article  Google Scholar 

  8. K. Weerdt, M. Ben Haha, G. Saout, K.O. Kjellsen, H. Justnes, and B. Lothenbach, The Effect of Temperature on the Hydration of Composite Cements Containing Limestone Powder and Fly Ash, Mater. Struct., 2012, 45(7), p 1101–1114.

    Article  CAS  Google Scholar 

  9. J.-H. Ha, Y.S. Jung, and Y.-G. Cho, Thermal Crack Control in Mass Concrete Structure Using an Automated Curing System, Automat. Construct., 2014, 45, p 16–24.

    Article  Google Scholar 

  10. J. Ouyang, X. Chen, Z. Huangfu, C. Lu, D. Huang, and Y. Li, Application of Distributed Temperature Sensing for Cracking Control of Mass Concrete, Constr. Build. Mater., 2019, 197, p 778–791.

    Article  Google Scholar 

  11. D.J. Jeong, T. Kim, J.-H. Ryu, and J.H. Kim, Analytical Model to Parameterize the Adiabatic Temperature Rise of Concrete, Constr. Build. Mater., 2021, 268, p 121656.

    Article  Google Scholar 

  12. B. Chen, B. Guan, X. Lu, B. Tian, and Y. Li, Thermal Conductivity Evolution of Early-Age Concrete Under Variable Curing Temperature: Effect Mechanism and Prediction Model, Constr. Build. Mater., 2022, 319, p 126078.

    Article  CAS  Google Scholar 

  13. D. Taoukil, A. El-Bouardi, F. Sick, A. Mimet, H. Ezbakhe, and T. Ajzoul, Moisture Content Influence on the Thermal Conductivity and Diffusivity of Wood–Concrete Composite, Construct. Build. Mater., 2013, 48, p 104–115.

    Article  Google Scholar 

  14. Y. Sargam, K. Wang, and I.H. Cho, Machine Learning Based Prediction Model for Thermal Conductivity of Concrete, J. Build.ing Eng., 2021, 34, p 101956.

    Article  Google Scholar 

  15. GB/T 50081-2019, Standard for Test Methods of Concrete Physical and Mechanical Properties, China Architecture and Building Press, Beijing (2019) (in Chinese), ed.

  16. SL/T 352-2020, Test Code for Hydraulic Concrete, China Standards Press, Beijing (2020) (in Chinese), ed.

  17. GB/T 32064-2015, Determination of thermal conductivity and thermal diffusivity of building materials: transient plane heat source method, China Architecture and Building Press, Beijing (2015) (in Chinese), ed.

  18. L. Courard and F. Michel, Limestone Fillers Cement Based Composites: Effects of Blast Furnace Slags on Fresh and hardened Properties, Constr. Build. Mater., 2014, 51, p 439–445.

    Article  Google Scholar 

  19. V.T. Pham, P. Meng, P.T. Bui, Y. Ogawa, and K. Kawai, Effects of Shirasu Natural Pozzolan and Limestone Powder on the Strength and Aggressive Chemical Resistance of Concrete, Constr. Build. Mater., 2020, 239, p 117679.

    Article  CAS  Google Scholar 

  20. M. Aqel and D.K. Panesar, Hydration Kinetics and Compressive Strength of Steam-Cured Cement Pastes and mortars Containing Limestone Filler, Constr. Build. Mater., 2016, 113, p 359–368.

    Article  CAS  Google Scholar 

  21. G. Menéndez, V. Bonavetti, and E.F. Irassar, Strength Development of Ternary Blended Cement with Limestone Filler and Blast-Furnace Slag, Cement Concr. Compos., 2003, 25(1), p 61–67.

    Article  Google Scholar 

  22. G. Kakali, S. Tsivilis, E. Aggeli, and M. Bati, Hydration Products of C3A, C3S and Portland Cement in the Presence of CaCO3, Cem. Concr. Res., 2000, 30(7), p 1073–1077.

    Article  CAS  Google Scholar 

  23. V.L. Bonavetti, V.F. Rahhal, and E.F. Irassar, Studies on the Carboaluminate Formation in Limestone Filler-Blended Cements, Cem. Concr. Res., 2001, 31(6), p 853–859.

    Article  CAS  Google Scholar 

  24. B. Lothenbach, G. Le Saout, E. Gallucci, and K. Scrivener, Influence of Limestone on the Hydration of Portland Cements, Cem. Concr. Res., 2008, 38(6), p 848–860.

    Article  CAS  Google Scholar 

  25. B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, and P. Lunk, Effect of Temperature on the Pore Solution, Microstructure and Hydration Products of Portland Cement Pastes, Cem. Concr. Res., 2007, 37(4), p 483–491.

    Article  CAS  Google Scholar 

  26. K.O. Kjellsen and R.J. Detwiler, Reaction Kinetics of Portland Cement Mortars Hydrated at Different Temperatures, Cem. Concr. Res., 1992, 22(1), p 112–120.

    Article  CAS  Google Scholar 

  27. T.T.H. Bach, C.C.D. Coumes, I. Pochard, C. Mercier, B. Revel, and A. Nonat, Influence of Temperature on the Hydration Products of Low pH Cements, Cem. Concr. Res., 2012, 42(6), p 805–817.

    Article  CAS  Google Scholar 

  28. J.I. Escalante-García and J.H. Sharp, Effect of Temperature on the Hydration of The Main Clinker Phases in Portland Cements: Part I, Neat Cements, Cem. Concr. Res., 1998, 28(9), p 1245–1257.

    Article  Google Scholar 

  29. K. De Weerdt, M.B. Haha, G. Le Saout, K.O. Kjellsen, H. Justnes, and B. Lothenbach, Hydration Mechanisms of Ternary Portland Cements Containing Limestone Powder and Fly Ash, Cem. Concr. Res., 2011, 41(3), p 279–291.

    Article  Google Scholar 

  30. M. Narmluk and T. Nawa, Effect of Fly Ash on the Kinetics of Portland Cement Hydration at Different Curing Temperatures, Cem. Concr. Res., 2011, 41(6), p 579–589.

    Article  CAS  Google Scholar 

  31. Y. Ogawa, K. Uji, A. Ueno, and K. Kawai, Contribution of Fly Ash to the Strength Development of Mortars Cured at Different Temperatures, Constr. Build. Mater., 2021, 276, p 122191.

    Article  Google Scholar 

  32. Y. Maltais and J. Marchand, Influence of Curing Temperature on Cement Hydration and Mechanical Strength Development of Fly Ash Mortars, Cem. Concr. Res., 1997, 27(7), p 1009–1020.

    Article  CAS  Google Scholar 

  33. S. Hanehara, F. Tomosawa, M. Kobayakawa, and K. Hwang, Effects of Water/Powder Ratio, Mixing Ratio of Fly Ash, and Curing Temperature on Pozzolanic Reaction of Fly Ash in Cement Paste, Cem. Concr. Res., 2001, 31(1), p 31–39.

    Article  CAS  Google Scholar 

  34. W. Jin, L. Jiang, L. Han, H. Huang, F. Zhi, G. Yang, Y. Niu, L. Chen, L. Wang, and Z. Chen, Influence of Curing Temperature on Freeze-Thaw Resistance of Limestone Powder Hydraulic Concrete, Case Stud. Constr. Mater., 2022, 17, p e01322.

    Google Scholar 

  35. B. Yılmaz and A. Olgun, Studies on cement and Mortar Containing Low-Calcium Fly Ash, Limestone, and Dolomitic Limestone, Cement Concr. Compos., 2008, 30(3), p 194–201.

    Article  Google Scholar 

  36. L. Alarcon-Ruiz, G. Platret, E. Massieu, and A. Ehrlacher, The Use of Thermal Analysis in Assessing the Effect of Temperature on a Cement Paste, Cem. Concr. Res., 2005, 35(3), p 609–613.

    Article  CAS  Google Scholar 

  37. Q. Zhou and F.P. Glasser, Thermal Stability and Decomposition Mechanisms of Ettringite at <120°C, Cem. Concr. Res., 2001, 31(9), p 1333–1339.

    Article  CAS  Google Scholar 

  38. C. Li and L. Jiang, Utilization of Limestone Powder as an Activator for Early-Age Strength Improvement of Slag Concrete, Constr. Build. Mater., 2020, 253, p 119257.

    Article  CAS  Google Scholar 

  39. P.E. Grattan-Bellew, Microstructural Investigation of Deteriorated Portland Cement Concretes, Constr. Build. Mater., 1996, 10(1), p 3–16.

    Article  Google Scholar 

  40. R. Snellings, A. Machner, G. Bolte, H. Kamyab, P. Durdzinski, P. Teck, M. Zajac, A. Muller, K. de Weerdt, and M.B. Haha, Hydration Kinetics of Ternary Slag-Limestone Cements: Impact of Water to Binder Ratio and Curing Temperature, Cem. Concr. Res., 2022, 151, p 106647.

    Article  CAS  Google Scholar 

  41. W.Z. Jin, L.H. Jiang, L. Han, Y. Gu, M.Z. Guo, S. Gao, L. Zhang, and M.W. Liu, Influence of Calcium Leaching on Mechanical and Physical Properties of Limestone Powder-Cement Pastes Cured under Different Temperatures, J. Mater. Civ. Eng., 2022, 34(9), p 04022214.

    Article  CAS  Google Scholar 

  42. C. Famy, K.L. Scrivener, A. Atkinson, and A.R. Brough, Effects of an Early or a Late Heat Treatment on the Microstructure and Composition of Inner C-S-H Products of Portland Cement Mortars, Cem. Concr. Res., 2002, 32(2), p 269–278.

    Article  CAS  Google Scholar 

  43. Q. Zeng, K. Li, T. Fen-chong, and P. Dangla, Pore Structure Characterization of Cement Pastes Blended with High-Volume Fly-ash, Cem. Concr. Res., 2012, 42(1), p 194–204.

    Article  CAS  Google Scholar 

  44. F. Zhi, Y. Jiang, M.-Z. Guo, W. Jin, X. Yan, P. Zhu, and L. Jiang, Effect of Polyacrylamide on the Carbonation Behavior of Cement Paste, Cem. Concr. Res., 2022, 156, p 106756.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is funded by the Water Science and Technology Project of Jiangsu Province (2021018) and National Natural Science Foundation of China (52078183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linhua Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Tang, X., Bai, Z. et al. Effect of Curing Temperature on Mechanical Strength and Thermal Properties of Hydraulic Limestone Powder Concrete. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08766-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08766-9

Keywords

Navigation