Skip to main content
Log in

On the Hu 2003 Plasticity Criterion

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, the Hu 2003 plasticity criterion performance is assessed against an experimental database, and a comparison is made with two variants of Hill 48 criterion for 10 different materials, mainly through the examination of the yield stress and anisotropy coefficients evolutions and the calculation of precision indices. The results show that the Hill 48-R and Hu criteria demonstrate superior performance with the latter also showing a good compromise in predicting both \(\sigma \left( \theta \right)\) and \(R\left( \theta \right){ }\) behavior reasonably well. Furthermore, the occasional oscillatory nature of Hu’s criterion for certain materials is confirmed. Subsequently, a global sensitivity analysis using the variational approach proposed by Sobol is conducted on the formulation \(\sigma \left( \theta \right)\) of the Hu criterion. The aim is to understand its occasional oscillatory behavior and identify the significant inputs in relation to this phenomenon. Through this analysis, the preponderant effects of certain parameters, particularly \(\sigma_{b}\) and \(R_{45}\), on the criterion’s oscillation are elucidated. This study also provides insights into the applicability range of the Hu 2003 criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.E. Tresca, Sur l’écoulement des Corps Solides Soumis à de Fortes Pressions, C. R. l’Acad. Sci., 1864, 59, p 754–758.

    Google Scholar 

  2. R. von Mises, Mechanik der Festen Körper im Plastisch Deformablen Zustand, Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse, 1913, 1, p 582–592.

    Google Scholar 

  3. M.H. Yu, Advances in Strength Theories for Materials under Complex Stress State in the 20th Century, Appl. Mech. Rev., 2002, 55, p 198–218.

    Article  Google Scholar 

  4. D.V. Wilson, Plastic Anisotropy in Sheet Metals, J. Inst. Met., 1996, 94, p 84–93.

    Google Scholar 

  5. B. Hutchinson, Critical Assessment 16: Anisotropy in Metals, Mater. Sci. Technol., 2015, 31(12), p 1393–1401.

    Article  CAS  Google Scholar 

  6. H. Wang, M. Men, Y. Yan, M. Wan, and Q. Li, Prediction of Eight Earings in Deep Drawing of 5754O Aluminum Alloy Sheet, Chin. J. Mech. Eng., 2019, 32, p 146–154.

    Article  Google Scholar 

  7. A.M. Szacinski and P.F. Thomson, Critical Conditions for Wrinkling during the Forming of Anisotropic Sheet Metal, J. Mater. Process. Technol., 1992, 35(2), p 213–219.

    Article  Google Scholar 

  8. H. Naziri and R. Pearce, The Effect of Plastic Anisotropy on Flange Wrinkling Behaviour during Sheet Metal Forming, Int. J. Mech. Sci., 1968, 10, p 681–694.

    Article  Google Scholar 

  9. L. Geng and R.H. Wagoner, Role of Plastic Anisotropy and Its Evolution on Springback, Int. J. Mech. Sci., 2002, 44, p 123–148.

    Article  Google Scholar 

  10. R. Hill, A theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. Ser. A, 1948, 193, p 281–297.

    Article  CAS  Google Scholar 

  11. D. Banabic, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation, Springer, Berlin, 2010.

    Book  Google Scholar 

  12. T. Jantarasricha, K. Chongbunwatana, and S. Panich, Comparative Study of Fracture Criteria through Bona Fide Experimental–Numerical Examinations on AA2024-T3, Int. J. Adv. Manuf. Technol., 2022, 119, p 7685–7710.

    Article  Google Scholar 

  13. O. Cazacu, R. Revil-Baudard, and N. Chandola, Plasticity Damage Couplings: From Single Crystal to Polycrystalline Materials, Springer, Berlin Heidelberg, 2019.

    Book  Google Scholar 

  14. E. Esener and A. Ünlü, Analytical Evaluation of Plasticity Models for Anisotropic Materials with Experimental Validation, Res. Eng. Struct. Mater., 2022, 8(1), p 75–89.

    Google Scholar 

  15. J. Woodthorpe and R. Pearce, The Anomalous Behaviour of Aluminium Sheet under Balanced Biaxial Tension, Int. J. Mech. Sci., 1970, 12(4), p 341–347.

    Article  Google Scholar 

  16. D. Banabic, Advances in Plastic Anisotropy and Forming Limits in Sheet Metal Forming, ASME J. Manuf. Sci. Eng., 2016, 138(9), p 090801.

    Article  Google Scholar 

  17. D. Banabic, F. Barlat, O. Cazacu, and T. Kuwabara, Advances in Anisotropy and Formability, Int. J. Mater. Form., 2010, 3(3), p 165–189.

    Article  Google Scholar 

  18. D. Banabic, F. Barlat, O. Cazucu, and T. Kuwabara, Advances in Anisotropy of Plastic Behaviour and Formability of Sheet Metals, Int. J. Mater. Form., 2020, 13(5), p 749–787.

    Article  Google Scholar 

  19. W. Hu, Characterized Behaviors and Corresponding Yield Criterion of Anisotropic Sheet Metals, Mater. Sci. Eng., 2003, A345(1), p 139–144.

    Article  CAS  Google Scholar 

  20. F. Cogun and H. Darendeliler, Comparison of Different Yield Criteria in Various Deep Drawn Cups, Int. J. Mater. Form., 2017, 10, p 85–98.

    Article  Google Scholar 

  21. W. Tong, An Improved Method of Determining Gotoh’s Nine Material Constants for a Sheet Metal with Only Seven or Less Experimental Inputs, Int. J. Mech. Sci., 2018, 140, p 394–406.

    Article  Google Scholar 

  22. F. Yoshida, H. Hamaski, and T. Uemori, A User-Friendly 3 D Yield Function to Describe Anisotropy of Steel Sheets, Int. J. Plast., 2013, 45, p 119–139.

    Article  CAS  Google Scholar 

  23. B. Sener, E.S. Kilicarslan, and M. Firat, Modelling Anisotropic Behavior of AISI 304 Stainless Steel Sheet Using a Fourth-Order Polynomial Yield Function, Procedia Manuf., 2020, 47, p 1456–1461.

    Article  Google Scholar 

  24. A.G. Leacock, A Mathematical Description of Orthotropy in Sheet Metals, J. Mech. Phys. Solids, 2006, 54, p 425–444.

    Article  CAS  Google Scholar 

  25. A. Ünlü, E. Esener, and M. Fırat, Evaluation of Plasticity Models Using Uniaxial Tensile Test, Eur. Mech. Sci., 2020, 4(3), p 116–122.

    Article  Google Scholar 

  26. W. Hu, An Orthotropic Yield Criterion in a 3-D General Stress State, Int. J. Plast., 2005, 21, p 1771–1796.

    Article  CAS  Google Scholar 

  27. W. Hu, Constitutive Modeling of Orthotropic Sheet Metals by Presenting Hardening-Induced Anisotropy, Int. J. Plast., 2007, 23, p 620–639.

    Article  CAS  Google Scholar 

  28. V. Cvitanic, F. Vlak, and Z. Lozina, A Finite Element Formulation Based on Non-associated Plasticity for Sheet Metal Forming, Int. J. Plast., 2008, 24, p 646–687.

    Article  CAS  Google Scholar 

  29. Z. Mu, J. Zhao, Q. Meng, X. Huang, and G. Yu, Applicability of Hill48 Yield Model and Effect of Anisotropic Parameter Determination Methods on Anisotropic Prediction, J. Mater. Eng. Perform., 2022, 31, p 2023–2042.

    Article  CAS  Google Scholar 

  30. K. Du and S. Huang, Effect of Different Yield Criteria and Material Parameter Identification Methods on the Description Accuracy of the Anisotropic Behavior of 5182-O Aluminum Alloy, J. Mater. Eng. Perform., 2022, 31, p 1077–1095.

    Article  CAS  Google Scholar 

  31. Z. Mu, J. Zhao, Q. Meng, Y. Zheng, and G. Yu, Limitation Analysis of the Hill 48 Yield Model and Establishment of Its Modified Model for Planar Plastic Anisotropy, J. Mater. Process. Technol., 2022, 299, p 117380.

    Article  CAS  Google Scholar 

  32. T.B. Stoughton, A Non-associated Flow Rule for Sheet Metal Forming, Int. J. Plast., 2002, 18, p 687–714.

    Article  Google Scholar 

  33. D.M. Hamby, A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models, Environ. Monit. Assess., 1994, 32, p 135–154.

    Article  CAS  Google Scholar 

  34. A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity Analysis in Practice a Guide to Assessing Scientific Models, Wiley, Hoboken, 2004.

    Google Scholar 

  35. S. Kucherenko and O. Zaccheus, SobolGSA Software. https://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software.

  36. I.M. Sobol, D. Asotsky, A. Kreinin, and S. Kucherenko, Construction and Comparison of High-Dimensional Sobol’ Generators, Wilmott, 2011, 56, p 64–79.

    Article  Google Scholar 

  37. S. Kucherenko, D. Albrecht, and A. Saltelli, Exploring Multi-dimensional Spaces: A Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques (2015) https://arxiv.org/abs/1505.02350

  38. F. Sarrazin, F. Pianosi, and T. Wagener, Global Sensitivity Analysis of Environmental Models: Convergence and Validation, Environ. Model. Softw., 2016, 79, p 135–152.

    Article  Google Scholar 

  39. F. Barlat, J.C. Brem, J.W. Yoon et al., Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory, Int. J. Plast., 2003, 19, p 1297–1319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Walid Najjar or Philippe Dal Santo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najjar, W., Ghaouss, I., Tiba, I. et al. On the Hu 2003 Plasticity Criterion. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08700-z

Keywords

Navigation