Skip to main content

Advertisement

Log in

Effect of Mn Content on Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Zn-Gd-Y Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Based upon its excellent biocompatibility, manganese (Mn) was used as an alloying element in extruded Mg-2Zn-0.5Gd-1Y Mg alloy for biomedical applications. Besides microstructural evaluation, mechanical and corrosion properties and biocompatibility of the Mg-Zn-Gd-Y-Mn alloys have been investigated by microscopic, tensile and corrosion analyses. Microscopic analysis has revealed the effect of Mn addition prior to extrusion of Mg-2Zn-0.5Gd-1Y grains, which was observed to be refined. Furthermore, the mechanical testing indicated the enhancement of tensile strength up to 265 MPa with 20.5% elongation. The chemical degradation analyses indicated that the Mn addition has effectively reduced the corrosion rate by increasing the corrosion potential of Mg alloys in Hank’s solution, which mainly refers to the inhibitory effect of Mn on the reduced precipitation of the Mg-2Zn-0.5Gd-1Y phase. As a result, the formation of Mg (OH)2, calcium and magnesium phosphates with small amounts of Zn, Y and Mg salts, generated after corrosion, form a dense protective layer on the surface of the Mg-alloy, which further protects from surface erosion. The cytotoxicity test has shown that magnesium alloy did not have cell toxicity, showing good cytocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Xu, G. Yu, E. Zhang, F. Pan, and K. Yang, In Vivo Corrosion Behavior of Mg-Mn-Zn Alloy for Bone Implant Application, J. Biomed. Mater. Res. Part A Offic. J. Soc. Biomater. Japan. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 2007, 83(3), p 703–711.

    Google Scholar 

  2. H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, and H. Waizy, Biodegradable Magnesium-Based Screw Clinically Equivalent to Titanium Screw in Hallux Valgus Surgery: Short Term Results of the First Prospective, Randomized, Controlled Clinical Pilot Study, Biomed. Eng. Online, 2013, 12(1), p 1–10.

    Article  Google Scholar 

  3. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and Its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27(9), p 1728–1734.

    Article  CAS  Google Scholar 

  4. L. Tan, Q. Wang, X. Lin, P. Wan, G. Zhang, Q. Zhang, and K. Yang, Loss of Mechanical Properties In Vivo and Bone-Implant Interface Strength of AZ31B Magnesium Alloy Screws with Si-Containing Coating, Acta Biomater., 2014, 10(5), p 2333–2340.

    Article  CAS  Google Scholar 

  5. E. Zhang, L. Xu, G. Yu, F. Pan, and K. Yang, In Vivo Evaluation of Biodegradable Magnesium Alloy bone Implant in the First 6 Months Implantation, J. Biomed. Mater. Res. Part A Offic. J. Soc. Biomater. Japan. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 2009, 90(3), p 882–893.

    Google Scholar 

  6. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, and Y. Bian, Research on an Mg–Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6(2), p 626–640.

    Article  CAS  Google Scholar 

  7. L.Y. Wei, G.L. Dunlop, and H. Westengen, Precipitation Hardening of Mg-Zn and Mg-Zn-RE Alloys, Metall. and Mater. Trans. A., 1995, 26, p 1705–1716.

    Article  Google Scholar 

  8. H. Kalb, A. Rzany, and B. Hensel, Impact of Microgalvanic Corrosion on the Degradation Morphology of WE43 and Pure Magnesium Under Exposure to Simulated Body Fluid, Corros. Sci., 2012, 57, p 122–130.

    Article  CAS  Google Scholar 

  9. J. Kubásek and D. Vojtěch, Structural and Corrosion Characterization of Biodegradable Mg–RE (RE= Gd, Y, Nd) Alloys, Trans. Nonferrous Met. Soc. China, 2013, 23(5), p 1215–1225.

    Article  Google Scholar 

  10. F. Feyerabend, J. Fischer, J. Holtz, F. Witte, R. Willumeit, H. Drücker, and N. Hort, Evaluation of Short-Term Effects of Rare Earth and Other elements used in Magnesium Alloys on Primary Cells and Cell LINES, Acta Biomater., 2010, 6(5), p 1834–1842.

    Article  CAS  Google Scholar 

  11. F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend, Degradable Biomaterials Based on Magnesium Corrosion, Curr. Opin. Solid State Mater. Sci., 2008, 12(5–6), p 63–72.

    Article  CAS  Google Scholar 

  12. H. Miao, H. Huang, Y. Shi, H. Zhang, J. Pei, and G. Yuan, Effects of Solution Treatment Before Extrusion on the Microstructure, Mechanical Properties and Corrosion of Mg-Zn-Gd alloy In Vitro, Corros. Sci., 2017, 122, p 90–99.

    Article  CAS  Google Scholar 

  13. J. Zhu, X.H. Chen, L. Wang, W.Y. Wang, Z.K. Liu, J.X. Liu, and X.D. Hui, High Strength Mg-Zn-Y Alloys Reinforced Synergistically by Mg12ZnY Phase and Mg3Zn3Y2 Particle, J. Alloy. Compd., 2017, 703, p 508–516.

    Article  CAS  Google Scholar 

  14. J. Zhang, M. Xu, X. Teng, and M. Zuo, Effect of Gd Addition on Microstructure and Corrosion Behaviors of Mg–Zn–Y alloy, J. Magnes. Alloys, 2016, 4(4), p 319–325.

    Article  CAS  Google Scholar 

  15. M.E. Drits, E.M. Padezhnova, and E.V. Muratova, Relationship Between Heat Resistance and Composition and Structural State of Alloys of Systems Mg-Y, Mg-Dy, and Mg-Sm, Russ. Metall., 1984, 1, p 195–198.

    Google Scholar 

  16. K. Bermudez, S. Brennan, and Y.H. Sohn, Intermetallic Phase Formation and Growth in the Mg-Y System, Magnesium Technology. Springer, Cham, 2012, p 145–148

    Google Scholar 

  17. N. Balasubramani, U.T.S. Pillai, and B.C. Pai, Effect of Zn concentration on the microstructure and phase formation of Mg–5Gd alloy, J. Alloy. Compd., 2008, 460(1–2), p L6–L10.

    Article  CAS  Google Scholar 

  18. A.D. Sudholz, K. Gusieva, X.B. Chen, B.C. Muddle, M.A. Gibson, and N. Birbilis, Electrochemical Behaviour and Corrosion of Mg–Y Alloys, Corros. Sci., 2011, 53(6), p 2277–2282.

    Article  CAS  Google Scholar 

  19. M. Liu, P. Schmutz, P.J. Uggowitzer, G. Song, and A. Atrens, The Influence of Yttrium (Y) on the Corrosion of Mg–Y Binary Alloys, Corros. Sci., 2010, 52(11), p 3687–3701.

    Article  CAS  Google Scholar 

  20. W. He, E. Zhang, and K. Yang, Effect of Y on the Bio-Corrosion Behavior of Extruded Mg–Zn–Mn alloy in Hank’s Solution, Mater. Sci. Eng. C, 2010, 30(1), p 167–174.

    Article  CAS  Google Scholar 

  21. H. Matsubara, Y. Ichige, K. Fujita, H. Nishiyama, and K. Hodouchi, Effect of Impurity Fe on Corrosion Behavior of AM50 and AM60 Magnesium Alloys, Corros. Sci., 2013, 66, p 203–210.

    Article  CAS  Google Scholar 

  22. G.S. Frankel, A. Samaniego, and N. Birbilis, Evolution of Hydrogen at Dissolving Magnesium Surfaces, Corros. Sci., 2013, 70, p 104–111.

    Article  CAS  Google Scholar 

  23. S. Simanjuntak, M.K. Cavanaugh, D.S. Gandel, M.A. Easton, M.A. Gibson, and N. Birbilis, The Influence of iron, Manganese, and Zirconium on the Corrosion of Magnesium: An Artificial Neural Network Approach, Corrosion, 2015, 71(2), p 199–208.

    Article  CAS  Google Scholar 

  24. J.Y. Lee, G. Han, Y.C. Kim, J.Y. Byun, J.I. Jang, H.K. Seok, and S.J. Yang, Effects of Impurities on the Biodegradation Behavior of Pure Magnesium, Met. Mater. Int., 2009, 15(6), p 955–961.

    Article  CAS  Google Scholar 

  25. D.D. Gu, J. Peng, J.W. Wang, Z.T. Liu, and F.S. Pan, Effect of Mn Modification on the Corrosion Susceptibility of Mg–Mn Alloys by Magnesium Scrap, Acta Metall. Sin., 2021, 34(1), p 1–11.

    Article  CAS  Google Scholar 

  26. Y. Xu, J. Li, M. Qi, W. Guo, and Y. Deng, A newly Developed Mg-Zn-Gd-Mn-Sr Alloy for Degradable Implant Applications: Influence of Extrusion Temperature on Microstructure, Mechanical Properties and In Vitro Corrosion Behavior, Mater. Charact., 2022, 188, 111867.

    Article  CAS  Google Scholar 

  27. L. Xu, E. Zhang, D. Yin, S. Zeng, and K. Yang, In Vitro Corrosion Behaviour of Mg Alloys in a Phosphate Buffered Solution for Bone Implant Application, J. Mater. Sci. Mater. Med., 2008, 19, p 1017–1025.

    Article  Google Scholar 

  28. E.S.M. Sherif and A.A. Almajid, Corrosion of Magnesium/Manganese Alloy in Chloride Solutions and Its Inhibition by 5-(3-Aminophenyl)-Tetrazole, Int. J. Electrochem. Sci, 2011, 6, p 2131–2148.

    Article  Google Scholar 

  29. Z. Liu, B. Chen, P. Zhao, L. Yu, Z. Pei, B. Zhou, and X. Zeng, Atomic-Scale Characterization of the Precipitates in a Mg-Gd-Y-Zn-Mn Alloy Using Scanning Transmission Electron Microscopy, Vacuum, 2023, 207, 111668.

    Article  CAS  Google Scholar 

  30. D. Li, J. Zhang, Z. Que, C. Xu, and X. Niu, Effects of Mn on the Microstructure and Mechanical Properties of Long Period Stacking Ordered Mg95Zn2.5Y2.5 Alloy, Mater. Lett., 2013, 109, p 46–50.

    Article  CAS  Google Scholar 

  31. C. Yan, H. Lu, J. Gao, G. Zhu, F. Yin, Z. Yang, and G. Li, Synthesis of Porous NiO-In2O3 Composite Nanofibers by Electrospinning and Their Highly Enhanced Gas Sensing Properties, J. Alloy. Compd., 2017, 699, p 567–574.

    Article  CAS  Google Scholar 

  32. N. El-Mahallawy, H. Palkowski, H.G. Breitinger, A. Klingner, M. Shoeib, and A. Diaa, Microstructure, Mechanical properties, Cytotoxicity, and Bio-Corrosion of Micro-Alloyed Mg–x Sn–0.04 Mn Alloys for Biodegradable Orthopedic Applications: Effect of processing techniques, J. Mater. Res., 2021, 36, p 1456–1474.

    Article  CAS  Google Scholar 

  33. N. El-Mahallawy, H. Palkowski, A. Klingner, A. Diaa, and M. Shoeib, Effect of 1.0 wt% Zn Addition on the Microstructure, Mechanical properties, and Bio-corrosion Behaviour of Micro Alloyed Mg-0.24 Sn-0.04 Mn Alloy as Biodegradable material, Mater. Today Commun., 2020, 24, p 100999.

    Article  CAS  Google Scholar 

  34. X.Y. Fang, D.Q. Yi, J.F. Nie, X.J. Zhang, B. Wang, and L.R. Xiao, Effect of Zr, Mn and Sc Additions on the Grain size of Mg–Gd Alloy, J. Alloy. Compd., 2009, 470(1–2), p 311–316.

    Article  CAS  Google Scholar 

  35. Q. Peng, X. Hou, L. Wang, Y. Wu, Z. Cao, and L. Wang, Microstructure and Mechanical Properties of High Performance Mg–Gd based Alloys, Mater. Des., 2009, 30(2), p 292–296.

    Article  CAS  Google Scholar 

  36. H. Okamoto and T.B. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, USA, 1990, p 12

    Google Scholar 

  37. H. Kuwahara, Y. Al-Abdullat, N. Mazaki, S. Tsutsumi, and T. Aizawa, Precipitation of Magnesium Apatite on Pure Magnesium Surface During Immersing in Hank’s Solution, Mater. Trans., 2001, 42(7), p 1317–1321.

    Article  CAS  Google Scholar 

  38. N. Tahreen and D.L. Chen, A Critical Review of Mg–Zn–Y Series Alloys Containing I, W, and LPSO phases, Adv. Eng. Mater., 2016, 18(12), p 1983–2002.

    Article  CAS  Google Scholar 

  39. E. Hall, Yield Point Phenomena in Metals and Alloys, Springer Science & Business Media, Cham, 2012.

    Google Scholar 

  40. S. Cai, T. Lei, N. Li, and F. Feng, Effects of Zn on Microstructure, Mechanical properties and Corrosion Behavior of Mg–Zn Alloys, Mater. Sci. Eng. C, 2012, 32(8), p 2570–2577.

    Article  CAS  Google Scholar 

  41. X.Y. Zhang, G.R. Li, T.W. Zhang, L. Cao, H.M. Wang, J.J. Wang, and X.J. Xu, Microstructure of in situ particles/7055Al matrix composites with deep cryogenic treatment, Appl. Mech. Mater., 1991, 217, p 114–118.

    Google Scholar 

  42. M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Mechanical Properties of Warm-Extruded Mg–Zn–Gd Alloy with Coherent 14H Long Periodic Stacking Ordered Structure Precipitate, Scripta Mater., 2005, 53(7), p 799–803.

    Article  CAS  Google Scholar 

  43. Y. Liu, J. Wen, H. Li, and J. He, Effects of Extrusion Parameters on the Microstructure, Corrosion Resistance, and Mechanical Properties of Biodegradable Mg–Zn–Gd–Y–Zr Alloy, J. Alloy. Compd., 2022, 891, 161964.

    Article  CAS  Google Scholar 

  44. S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding, and Y.P. Zhu, Comparison of the Microstructure and Mechanical PROPERTIES of a ZK60 Alloy with and Without 1.3 wt% Gadolinium addition, Mater. Sci. Eng. A, 2006, 433(1–2), p 175–181.

    Article  Google Scholar 

  45. Y. Wu and W. Hu, Comparison of the Solid solution Properties of Mg-RE (Gd, Dy, Y) Alloys with Atomistic Simulation, Physics Research International, 2008.

    Book  Google Scholar 

  46. Y. Ding, C. Wen, P. Hodgson, and Y. Li, Effects of Alloying Elements on the Corrosion Behavior and Biocompatibility of Biodegradable Magnesium Alloys: A Review, J. Mater. Chem.stry B, 2014, 2(14), p 1912–1933.

    Article  CAS  Google Scholar 

  47. J. Wang, S. Gao, P. Song, X. Huang, Z. Shi, and F. Pan, Effects of Phase Composition on the Mechanical Properties and Damping Capacities of As-Extruded Mg–Zn–Y–Zr Alloys, J. Alloy. Compd., 2011, 509(34), p 8567–8572.

    Article  CAS  Google Scholar 

  48. D. Bae, S.H. Kim, D.H. Kim, and W.T. Kim, Deformation Behavior of Mg–Zn–Y Alloys Reinforced by Icosahedral Quasicrystalline Particles, Acta Mater., 2002, 50(9), p 2343–2356.

    Article  CAS  Google Scholar 

  49. N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Strengthening Mechanisms in Magnesium Alloys Containing Ternary I, W and LPSO Phases, J. Mater. Sci. Technol., 2018, 34(7), p 1110–1118.

    Article  CAS  Google Scholar 

  50. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han, Effect of W-Phase on the Mechanical Properties of As-Cast Mg–Zn–Y–Zr Alloys, J. Alloy. Compd., 2008, 461(1–2), p 248–252.

    Article  CAS  Google Scholar 

  51. S. You, Y. Huang, K.U. Kainer, and N. Hort, Recent Research and Developments on Wrought Magnesium Alloys, J. Magnes. Alloys, 2017, 5(3), p 239–253.

    Article  CAS  Google Scholar 

  52. Q. Yang, B.L. Xiao, Q. Zhang, M.Y. Zheng, and Z.Y. Ma, Exceptional High-Strain-Rate Superplasticity in Mg–Gd–Y–Zn–Zr Alloy with Long-Period Stacking Ordered Phase, Scr. Mater, 2013, 69, p 801–804.

    Article  CAS  Google Scholar 

  53. S. Yin, Z. Zhang, X. Liu, Q. Le, Q. Lan, L. Bao, and J. Cui, Effects of Zn/Gd ratio on the Microstructures and Mechanical Properties of Mg-Zn-Gd-Zr Alloys, Mater. Sci. Eng. A, 2017, 695, p 135–143.

    Article  CAS  Google Scholar 

  54. N. Wang, W.Y. Yu, B.Y. Tang, L.M. Peng, and W.J. Ding, Structural and Mechanical Properties of Mg17Al12 and Mg24Y5 from First-Principles Calculations, J. Phys. D Appl. Phys., 2008, 41(19), 195408.

    Article  Google Scholar 

  55. F. Abdiyan, R. Mahmudi, and H.M. Ghasemi, Effect of Mn Addition on the Microstructure, Mechanical Properties and Corrosion Resistance of a Biodegradable Mg–Gd–Zn Alloy, Mater. Chem. Phys., 2021, 271, 124878.

    Article  CAS  Google Scholar 

  56. N. Birbilis, M.A. Easton, A.D. Sudholz, S.M. Zhu, and M.A. Gibson, On the Corrosion of Binary Magnesium-Rare Earth Alloys, Corros. Sci., 2009, 51(3), p 683–689.

    Article  CAS  Google Scholar 

  57. M. Sabbaghian, R. Mahmudi, and K.S. Shin, Microstructure, Texture, Mechanical Properties and Biodegradability of Extruded Mg–4Zn-xMn Alloys, Mater. Sci. Eng. A, 2020, 792, 139828.

    Article  CAS  Google Scholar 

  58. Y. Deo, R. Ghosh, A. Nag, D.V. Kumar, R. Mondal, and A. Banerjee, Direct and Pulsed Current Electrodeposition of Zn-Mn Coatings from Additive-Free Chloride Electrolytes for Improved Corrosion Resistance, Electrochim. Acta, 2021, 399, 139379.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant No. 52027805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, C., Wang, Z. et al. Effect of Mn Content on Microstructure, Mechanical Properties, and Corrosion Behavior of Mg-Zn-Gd-Y Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08695-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08695-7

Keywords

Navigation