Skip to main content

Advertisement

Log in

Influence of High-Temperature Annealing on Microstructure and Properties of Welded Joints Using Narrow Gap Laser Welding of TC4 Titanium with Welding Wire

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To solve the technical problems of poor strength–plasticity–toughness matching of titanium alloy welded joints, the optimized multi-stranded wires are used as the filler metal for narrow gap laser welding of TC4 titanium, and the welded joints obtained using high-temperature annealing were heat-treated at 850 °C holding 2 h. The macrostructure, microstructure and texture of both welded joints were compared by employing an optical microscope, scanning electron microscope and transmission electron microscope, and the tensile and impact properties were also evaluated. The results show that after heat treatment of the welded zone acicular α' martensite decomposition into lamellar α-phase + β-phase, the welded joint microhardness distribution tends to be smooth, the average tensile strength of the welded joints is 902 MPa, elongation is 14.5%, about 4.1% lower than the as-welded of the welded joints tensile strength, but elongation increased 3.5%, and room-temperature impact energy is 18.5 J, increased by about 54% than the as-welded impact energy, achieving a reasonable match of strength–plasticity–toughness of titanium alloy welded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.L. Jia, L.H. Wu, P. Xue, D.R. Ni, B.L. Xiao and Z.Y. Ma, Effect of Static Annealing on Superplastic Behavior of a Friction Stir Welded Ti-6Al-4V Alloy Joint and Its Microstructural Evolution (In English), J. Mater. Sci. Technol, 2022, 130, p 112–123. https://doi.org/10.1016/j.jmst.2022.05.006

    Article  CAS  Google Scholar 

  2. H.B. Xia, C.W. Tan, L.Q. Li and N.S. Ma, In Situ SEM Study on Tensile Fractured Behavior of Al/Steel Laser Welding-brazing Interface (In English), J. Mater. Eng. Perform, 2018, 27, p 1047–1057. https://doi.org/10.1007/s11665-018-3227-8

    Article  CAS  Google Scholar 

  3. M. Bambach, I. Sizova, J. Szyndler, J. Bennett, G. Hyatt, J. Cao, T. Papke and M. Merklein, On the Hot Deformation Behavior of Ti-6Al-4V Made by Additive Manufacturing (In English), J. Mater. Process. Technol., 2021, 288, p 116840. https://doi.org/10.1016/j.jmatprotec.2020.116840

    Article  CAS  Google Scholar 

  4. J.S. Jha, S.P. Toppo, R. Singh, A. Tewari and S.K. Mishra, Deformation Behavior of Ti-6Al-4V Microstructures Under Uniaxial Loading: Equiaxed Vs. Transformed-β Microstructures (In English), Mater. Charact, 2021, 171, p 110780. https://doi.org/10.1016/j.matchar.2020.110780

    Article  CAS  Google Scholar 

  5. J.K. Huang, Y.Q. Huang, X.Q. Yu, G.Y. Liu, S.R. Yu and D. Fan, Corrosion Characterization of Ti-6Al-4V Coating Layer by The Alternating Current Assisted GTAW Method, Corros. Sci., 2022, 197, p 110066. https://doi.org/10.1016/j.corsci.2021.110066

    Article  CAS  Google Scholar 

  6. C.L. Jia, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, B.L. Xiao and Z.Y. Ma, Static Spheroidization Behavior and Its Effect on Superplasticity of Fine Lamellae in Nugget of a Friction Stir Welded Ti-6Al-4V Joint (In English), J. Mater. Sci. Technol, 2022, 119, p 1–10. https://doi.org/10.1016/j.jmst.2021.10.054

    Article  CAS  Google Scholar 

  7. S.M. Kelly and S.L. Kampe, Microstructural Evolution in Laser-deposited Multilayer Ti-6Al-4V Builds: Part II. Thermal Modeling, Metall. Mater. Trans. A, 2004, 35, p 1869–1879.

    Article  Google Scholar 

  8. M. Balasubramanian, V. Jayabalan and V. Balasubramanian, Effect of Pulsed Gas Tungsten Arc Welding on Corrosion Behavior of Ti-6Al-4V Titanium Alloy (In English), Mater. Des, 2008, 29, p 1359–1363. https://doi.org/10.1016/j.matdes.2007.06.009

    Article  CAS  Google Scholar 

  9. X. Wen, M.P. Wan, C.W. Huang and M. Lei, Strength and Fracture Toughness of TC21 Alloy with Multi-level Lamellar Microstructure (In English), Mater. Sci. Eng. A, 2019, 740, p 121–129. https://doi.org/10.1016/j.msea.2018.10.056

    Article  CAS  Google Scholar 

  10. P. Åkerfeldt, M.L. Antti and R. Pederson, Influence of Microstructure on Mechanical Properties of Laser Metal Wire-Deposited Ti-6Al-4V (In English), Mater. Sci. Eng. A, 2016, 674, p 428–437. https://doi.org/10.1016/j.msea.2016.07.038

    Article  CAS  Google Scholar 

  11. J. Ju, J. Li, C. Yang, K. Wang, M. Kang and J. Wang, Evolution of The Microstructure and Optimization of The Tensile Properties of The Ti-6Al-4V Alloy by Selective Laser Melting and Heat Treatment (In English), Mater. Sci. Eng. A, 2021, 802, p 140673. https://doi.org/10.1016/j.msea.2020.140673

    Article  CAS  Google Scholar 

  12. S. Liu and Y.C. Shin, Additive Manufacturing of Ti6Al4V Alloy: A Review (In English), Mater. Des., 2019, 164, p 107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  13. N. Saresh, M. Gopalakrishna Pillai and J. Mathew, Investigations into The Effects of Electron Beam Welding on Thick Ti-6Al-4V Titanium Alloy (In English), J. Mater. Process. Technol., 2007, 192, p 83–88. https://doi.org/10.1016/j.jmatprotec.2007.04.048

    Article  CAS  Google Scholar 

  14. C.Y. Zeng, Y.P. Zhang, J.L. Hu, B. Hou, C.L. Dong and Y. Zhou, The Role of Microstructure on Corrosion Fatigue Behavior of Thick-plate Ti-6Al-4V Joint Via Vacuum Electron Beam Welding (In English), Vacuum, 2020, 2020(182), p 109714. https://doi.org/10.1016/j.vacuum.2020.109714

    Article  CAS  Google Scholar 

  15. N.W. Fang, E.J. Guo, R.S. Huang, L.M. Yin, Y.S. Chen, C.Y. Zeng, H. Cao, J.P. Zou and K. Xu, Effect of Welding Heat Input on Microstructure and Properties of TC4 Titanium Alloy Ultra-narrow Gap Welded Joint by Laser Welding with Filler Wire (In English), Mater. Res. Express, 2021, 8, p 016511. https://doi.org/10.1088/2053-1591/abd4b3

    Article  CAS  Google Scholar 

  16. G. Li and C.Q. Sun, High-Temperature Failure Mechanism and Defect Sensitivity of TC17 Titanium Alloy in High Cycle Fatigue (In English), J. Mater. Sci. Technol., 2022, 122, p 128–140. https://doi.org/10.1016/j.jmst.2022.01.010

    Article  CAS  Google Scholar 

  17. N.W. Fang, E.J. Guo, K. Xu, R.S. Huang, Y.M. Ma, Y.S. Chen, Y.C. Yang and J.L. Xie, In-situ Observation of Grain Growth and Phase Transformation in Weld Zone of Ti-6Al-4V Titanium Alloy by Laser Welding with Filler Wire (In English), Mater. Res. Express, 2021, 8, p 056507. https://doi.org/10.1088/2053-1591/abfc7b

    Article  CAS  Google Scholar 

  18. W.M. Long, D.S. Liu, A.P. Wu, D.C. Wang and G.Q. Huang, Influence of laser scanning speed on the formation property of laser brazing diamond coating, Diam. Relat. Mater., 2020, 110, p 108085. https://doi.org/10.1016/j.diamond.2020.108085

    Article  CAS  Google Scholar 

  19. T. Yang, Y.H. Xiao, Y.A. Zhuang, J.Y. Liu, H.Y. Li and Y. Wang, Effect of Microstructural Heterogeneity on Corrosion Fatigue Crack Growth Behavior of 60-mm Thick-plate TC4 Titanium Alloy NG-GTAW Welded Joint (In English), Int. J. Fatigue, 2022, 163, p 107030. https://doi.org/10.1016/j.ijfatigue.2022.107030

    Article  CAS  Google Scholar 

  20. L.B. Sun, M.Q. Wang, L.J. Huang, N.W. Fang, P.B. Wu, R.S. Huang, K. Xu, X.X. Wang, J. Qin, S. Li and W.M. Long, Comparative Study on Laser Welding Thick-Walled TC4 Titanium Alloy with Flux-Cored Wire and Cable Wire (In English), Materials, 2023, 16, p 1509. https://doi.org/10.3390/ma16041509

    Article  CAS  Google Scholar 

  21. M.Q. Wang, N.W. Fang, L.B. Sun, P.B. Wu, R.S. Huang, K. Xu, X.X. Wang, J. Qin, Z.Z. Zhou, S. Li, J.H. Su and W.M. Long, Study of the Microstructure and Properties of the Butt Joint of Laser-Welded Titanium Alloy with Flux-Cored Wire (In English), Metals-Basel, 2023, 13, p 369. https://doi.org/10.3390/met13020369

    Article  CAS  Google Scholar 

  22. C.W. Huang, Y.Q. Zhao, S.W. Xin, W. Zhou, Q. Li, W.D. Zeng and C.S. Tan, High Cycle Fatigue Behavior of Ti-5Al-5Mo-5V-3Cr-1Zr Titanium Alloy with Bimodal Microstructure (In English), J. Alloy. Compd., 2016, 695, p 1966–1975. https://doi.org/10.1016/j.jallcom.2016.11.031

    Article  CAS  Google Scholar 

  23. Y.L. Qi, J. Deng, Q. Hong and L.Y. Zeng, Electron Beam Welding, Laser Beam Welding and Gas Tungsten Arc Welding of Titanium Sheet (In English), Mater. Sci. Eng. A, 2000, 280, p 177–181. https://doi.org/10.1016/S0921-5093(99)00662-0

    Article  Google Scholar 

  24. G.Q. Wang, Z.Y. Chen, J.W. Li, J.R. Liu, Q.J. Wang and R. Yang, Microstructure and Mechanical Properties of Electron Beam Welded Titanium Alloy Ti-6246 (In English), J. Mater. Sci. Technol, 2018, 34, p 570–576. https://doi.org/10.1016/j.jmst.2016.10.007

    Article  CAS  Google Scholar 

  25. T. Debroy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewsko, A. Beese, A. Wilson, A. De and W. Zhang, Additive Manufacturing of Metallic Components- Process (In English), Structure and Properties. Prog. Mater. Sci, 2018, 92, p 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  26. X.Y. Zhang, G. Fang, S. Leeflang, A.J. Böttger, A.A. Zadpoor and J. Zhou, Effect of Subtransus Heat Treatment on The Microstructure and Mechanical Properties of Additively Manufactured Ti-6Al-4V Alloy, J. Alloys. Compd., 2018, 735, p 1562–1575. https://doi.org/10.1016/j.jallcom.2017.11.263

    Article  CAS  Google Scholar 

  27. S. Cao, R.K. Chu, X.G. Zhou, K. Yang, Q.G. Jia, C.V.S. Lim, A.J. Huang and X.H. Wu, Role of Martensite Decomposition in Tensile Properties of Selective Laser Melted Ti-6Al-4V (In English), J. Alloys. Compd, 2018, 744, p 357–363. https://doi.org/10.1016/j.jallcom.2018.02.111

    Article  CAS  Google Scholar 

  28. W. Xu, E.W. Lui, A. Pateras, M. Qian and M. Brandt, In Situ Tailoring Microstructure in Additively Manufactured Ti-6Al-4V for Superior Mechanical Performance (In English), Acta Mater, 2017, 125, p 390–400. https://doi.org/10.1016/j.actamat.2016.12.027

    Article  CAS  Google Scholar 

  29. S.Q. Wu, Y.J. Lu, Y.L. Gan, T.T. Huang, C.Q. Zhao, J.J. Lin, S. Guo and J.X. Lin, Microstructural Evolution and Microhardness of A Selective-laser-melted Ti-6Al-4V Alloy After Post Heat Treatments (In English), J. Alloys Compd., 2016, 672, p 643–652. https://doi.org/10.1016/j.jallcom.2016.02.183

    Article  CAS  Google Scholar 

  30. Z.L. Liang, Z.G. Sun, W.S. Zhang, S.K. Wu and H. Chang, The Effect of Heat Treatment on Microstructure Evolution and Tensile Properties of Selective Laser Melted Ti-6Al-4V Alloy (In English), J. Alloys. Compd, 2019, 782, p 1041–1048. https://doi.org/10.1016/j.jallcom.2018.12.051

    Article  CAS  Google Scholar 

  31. J.P. Shi, G. Song and J.Y. Chi, Effect of Active Gas on Weld Appearance and Performance in Laser-TIG Hybrid Welded Titanium Alloy (In English), Int. J. Lightweight Mater. Manuf, 2018, 1, p 47–53. https://doi.org/10.1016/j.ijlmm.2018.03.002

    Article  Google Scholar 

  32. X.Z. Li, S.B. Hu, J.Z. Xiao and L.B. Ji, Effects of The Heterogeneity in The Electron Beam Welded Joint on Fatigue Crack Growth in Ti-6Al-4V Alloy (In English), Mater. Sci. Eng. A, 2011, 529, p 170–176. https://doi.org/10.1016/j.msea.2011.09.014

    Article  CAS  Google Scholar 

  33. A.M. Khorasani, I. Gibson, M. Goldberg and G. Littlefair, On The Role of Different Annealing Heat Treatments on Mechanical Properties and Microstructure of Selective Laser Melted and Conventional Wrought Ti-6Al-4V (In English), Rapid. Prototyping. J, 2017, 23, p 295–304. https://doi.org/10.1108/RPJ-02-2016-0022

    Article  Google Scholar 

  34. Y.D. Liu, J.H. Liu, W.S. Gu, H.L. Li, W.H. Li, Z.L. Pei, J. Gong and C. Sun, Oxidation, Mechanical and Tribological Behaviors of The Ni/cBN Abrasive Coating-Coated Titanium Alloys (In English), Acta. Metall. Sin, 2021, 36, p 31–35. https://doi.org/10.1007/s40195-020-01167-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wu, P., Xu, K. et al. Influence of High-Temperature Annealing on Microstructure and Properties of Welded Joints Using Narrow Gap Laser Welding of TC4 Titanium with Welding Wire. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08629-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08629-3

Keywords

Navigation