Skip to main content

Advertisement

Log in

Effects of Different Powder Feeding Rates on Microstructure and Mechanical Properties of IN718 Cladding Coating

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to know the effect of powder feeding rate on IN718 powder repairing hydraulic column steel, and to compare with the effect of laser power on IN718 coating properties, the optimal process parameters of laser cladding process were determined. The XRD pattern, microstructure, tensile properties, fracture morphology and corrosion resistance of the cladding layer under different process parameters were studied. The results show that when the laser power is constant, the volume fraction of Ni3Fe phase in the coating obviously increases first and then decreases with the increase in powder feeding rate, and the mechanical properties and corrosion resistance of the specimen have the same variation trend of Ni3Fe phase. The effect of powder feeding rate on the microstructure and corrosion resistance of cladding coating is less than that of laser power. When the powder feeding rate is 20 g/min and laser power is 1800 W, the middle and lower microstructure of the cladding layer is composed of directional small size (less than 30 μm) columnar crystals and dendrites, and the mechanical properties and corrosion resistance are the best. This study provides data reference for laser cladding remanufacturing of hydraulic support column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.X. Lu, Z.H. Zhang, M. Lv, X.T. Li, S.B. Song, and M. Fang, Evolution of Non-Metallic Inclusions in 27SiMn Steel, J. Metals., 2022, 12(5), p 718. https://doi.org/10.3390/met12050718

    Article  CAS  Google Scholar 

  2. T. Peng, Y.A. Wang, Y. Zhu, Y. Yang, Y.R. Yang, and R.Z. Tang, Life Cycle Assessment of Selective-Laser-Melting-Produced Hydraulic Valve Body with Integrated Design and Manufacturing Optimization: A Cradle-to-Gate Study, J. Addit. Manuf., 2020, 36, p 101530. https://doi.org/10.1016/j.addma.2020.101530

    Article  Google Scholar 

  3. L.D. Zhu, P.S. Xue, Q. Lan, G.R. Meng, Y. Ren, Z.C. Yang, R.H. Xu, and Z. Liu, Recent Research and Development Status of Laser Cladding: A Review, J. Opt. Laser Technol., 2021, 138, p 106915. https://doi.org/10.1016/j.optlastec.2021.106915

    Article  CAS  Google Scholar 

  4. R.F. Li, W.Y. Yuan, H.Y. Yue, and Y.Y. Zhu, Study on Microstructure and Properties of Fe-Based Amorphous Composite Coating by High-Speed Laser Cladding, J. Opt. Laser Technol., 2022, 146, p 107574. https://doi.org/10.1016/j.optlastec.2021.107574

    Article  CAS  Google Scholar 

  5. X.Y. Shi, D.S. Wen, S.R. Wang, G.Q. Wang, M.Y. Zhang, J.K. Li, and C.L. Xue, Investigation on Friction and Wear Performance of Laser Cladding Ni-Based Alloy Coating on Brake Disc, J. Optik., 2021, 242, p 167227. https://doi.org/10.1016/j.ijleo.2021.167227

    Article  CAS  Google Scholar 

  6. K. Qi, Y. Yang, R. Sun, G.F. Hu, X. Lu, J.D. Li, W.X. Liang, K. Jin, and L. Xiong, Effect of Magnetic Field on Crack Control of Co-based Alloy Laser Cladding, J. Opt. Laser Technol., 2021, 141, p 107129. https://doi.org/10.1016/j.optlastec.2021.107129

    Article  CAS  Google Scholar 

  7. S. Dai, D.W. Zuo, C. Fang, L. Zhu, H. Cheng, Y.X. Gao, and W.W. Li, Characteration of Laser Cladded Fe-Mn-Cr Alloy Coatings Modified by Plasma Nitriding, J. Mater. Trans., 2016, 57(4), p 539–543. https://doi.org/10.2320/matertrans.M2015396

    Article  CAS  Google Scholar 

  8. M.Y. Xiao, H.B. Gao, L.B. Sun, Z. Wang, G.R. Jiang, Q.S. Zhao, C.H. Guo, L.Y. Li, and F.C. Jiang, Microstructure and Mechanical Properties of Fe-Based Amorphous Alloy Coatings Prepared by Ultra-High Speed Laser Cladding, J. Mater. Lett., 2021, 297, p 130002. https://doi.org/10.1016/j.matlet.2021.130002

    Article  CAS  Google Scholar 

  9. H.H. Ding, X.P. Mu, Y. Zhu, W.B. Yang, Q. Xiao, W.J. Wang, Q.Y. Liu, J. Guo, and Z.R. Zhou, Effect of Laser Claddings of Fe-Based Alloy Powder with Different Concentrations of WS2 on the Mechanical and Tribological Properties of Railway Wheel, J. Wear., 2022, 488, p 204174. https://doi.org/10.1016/j.wear.2021.204174

    Article  CAS  Google Scholar 

  10. C.Y. Ouyang, Q.F. Bai, X.G. Yan, Z. Chen, B.H. Han, and Y. Liu, Microstructure and Corrosion Properties of Laser Cladding Fe-Based Alloy Coating on 27SiMn Steel Surface, J. Coat., 2021, 11(5), p 552. https://doi.org/10.3390/coatings11050552

    Article  CAS  Google Scholar 

  11. T. Sonar, V. Balasubramanian, S. Malarvizhi, T. Venkateswaran, and D. Sivakumar, An Overview on Welding of Inconel 718 Alloy-Effect of Welding Processes on Microstructural Evolution and Mechanical Properties of Joints, J. Mater. Charact., 2021, 174, p 110997. https://doi.org/10.1016/j.matchar.2021.110997

    Article  CAS  Google Scholar 

  12. S. Sui, J. Chen, Z. Li, H.S. Li, X. Zhao, and H. Tan, Investigation of Dissolution Behavior of Laves Phase in Inconel 718 Fabricated by Laser Directed Energy Deposition, J. Addit. Manuf., 2020, 32, p 101055. https://doi.org/10.1016/j.addma.2020.101055

    Article  CAS  Google Scholar 

  13. H.L. Xie, K. Yang, F. Li, C. Sun, and Z.P. Yu, Investigation on the Laves Phase Formation During Laser Cladding of IN718 Alloy by CA-FE, J. Manuf. Process., 2020, 52, p 132–144. https://doi.org/10.1016/j.jmapro.2020.01.050

    Article  Google Scholar 

  14. S. Singh, D.K. Goyal, P. Kumar, and A. Bansal, Influence of Laser Cladding Parameters on Slurry Erosion Performance of NiCrSiBC+ 50WC Claddings, J. Int. J. Refract. Metals Hard Mater., 2022, 105, p 105825. https://doi.org/10.1016/j.ijrmhm.2022.105825

    Article  CAS  Google Scholar 

  15. Y.L. Zhang, C. Liu, W.B. Yao, S. Shang, and C.S. Liu, Effects of powder feeding rate on microstructure and mechanical properties of GH4169, Second International Conference on Medical Imaging and Additive Manufacturing., 2022, 12179, p. 78–85. https://doi.org/10.1117/12.2636520

  16. T.G. Kim and D.S. Shim, Effect of Laser Power and Powder Feed Rate on Interfacial Crack and Mechanical/Microstructural Characterizations in Repairing of 630 Stainless Steel Using Direct Energy Deposition, J. Mater. Sci. Eng., 2021, 828, p 142004. https://doi.org/10.1016/j.msea.2021.142004

    Article  CAS  Google Scholar 

  17. A.K. Das, Recent Trends in Laser Cladding and Alloying on Magnesium Alloys: A Review, J. Mater. Today Proc., 2022, 51, p 723–727. https://doi.org/10.1016/j.matpr.2021.06.217

    Article  CAS  Google Scholar 

  18. L.S. Shu, Z. Heng, P.Y. Li, H. Wu, J.H. Li, and J.J. Feng, Effect of Laser Powers on the Mechanical Properties 27SiMn Steel with Inconel 718 Cladding Coatings, J. Mater. Res. Express, 2022, 9(9), p 096511. https://doi.org/10.1088/2053-1591/ac8f21/pdf

    Article  Google Scholar 

  19. F. Bourahima, A.L. Helbert, M. Rege, V. Ji, D. Solas, and T. Baudin, Laser Cladding of Ni Based Powder on a Cu-Ni-Al Glassmold: Influence of the Process Parameters on Bonding Quality and Coating Geometry, J. Alloys Compd., 2019, 771, p 1018–1028. https://doi.org/10.1016/j.jallcom.2018.09.004

    Article  CAS  Google Scholar 

  20. Standard, A. S. T. M. (2009). E8/E8M, 2009. Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, p. 1–27. https://doi.org/10.1520/E0008_E0008M

  21. Y.J. Li, X.T. Liu, S.Y. Dong, X.D. Ren, S.X. Yan, and B.S. Xu, Influence of Laser Power on Interface Characteristics and Cracking Behavior During Laser Remanufacturing of Nodular Cast Iron, J. Eng. Fail. Anal., 2021, 122, p 105226. https://doi.org/10.1016/j.engfailanal.2021.105226

    Article  CAS  Google Scholar 

  22. L.Y. Chen, T. Xu, S. Lu, Z.X. Wang, S. Chen, and L.C. Zhang, Improved Hardness and Wear Resistance of Plasma Sprayed Nanostructured NiCrBSi Coating via Short-Time Heat Treatment, J. Surf. Coat. Technol., 2018, 350, p 436–444. https://doi.org/10.1016/j.surfcoat.2018.07.037

    Article  CAS  Google Scholar 

  23. C. Xu, L.Y. Chen, C.B. Zheng, H.Y. Zhang, C.H. Zhao, Z.X. Wang, S. Lu, J.W. Zhang, and L.C. Zhang, Improved Wear and Corrosion Resistance of Microarc Oxidation Coatings on Ti-6Al-4V Alloy with Ultrasonic Assistance for Potential Biomedical Applications, J. Adv. Eng. Mater., 2021, 23(4), p 2001433. https://doi.org/10.1002/adem.202001433

    Article  CAS  Google Scholar 

  24. Y.J. Xie, W.J. Chen, L.B. Liang, B.S. Huang, and J. Zhuang, Influence of Laser Power on the Microstructure and Properties of Fe314 Alloy Cladding Layer on EA4T Steel, J. Weld. World, 2022, 66(8), p 1551–1563. https://doi.org/10.1007/s40194-022-01309-1

    Article  CAS  Google Scholar 

  25. Y. Zhao, T.Q. Zhang, L.Y. Chen, T.B. Yu, J.Y. Sun, and C. Guan, Microstructure and Mechanical Properties of Ti-C-TiN-Reinforced Ni204-Based Laser-Cladding Composite Coating, J. Ceram. Int., 2021, 47(5), p 5918–5928. https://doi.org/10.1016/j.ceramint.2020.11.054

    Article  CAS  Google Scholar 

  26. X. Han, C. Li, Y.P. Yang, X. Gao, and H.X. Gao, Experimental Research on the Influence of Ultrasonic Vibrations on the Laser Cladding Process of a Disc Laser, J. Surf. Coat. Technol., 2021, 406, p 126750. https://doi.org/10.1016/j.surfcoat.2020.126750

    Article  CAS  Google Scholar 

  27. D. Bartkowski, A. Bartkowska, and P. Jurči, Laser Cladding Process of Fe/WC Metal Matrix Composite Coatings on Low Carbon Steel Using Yb: YAG Disk Laser, J. Opt. Laser Technol., 2021, 136, p 106784. https://doi.org/10.1016/j.optlastec.2020.106784

    Article  CAS  Google Scholar 

  28. P.H. Xu, L.D. Zhu, P.S. Xue, G.R. Meng, S.H. Wang, Z.C. Yang, J.S. Ning, and Q. Lan, Multi-Track Alternated Overlapping Model Suitable for Variable Laser Cladding Process Parameters, J. Surf. Coat. Technol., 2021, 425, p 127706. https://doi.org/10.1016/j.surfcoat.2021.127706

    Article  CAS  Google Scholar 

  29. N. Thawari, C. Gullipalli, J.K. Katiyar, and T.V.K. Gupta, Effect of Multi-Layer Laser Cladding of Stellite 6 and Inconel 718 Materials on Clad Geometry, Microstructure Evolution and Mechanical Properties, J. Mater. Today Commun., 2021, 28, p 102604. https://doi.org/10.1016/j.mtcomm.2021.102604

    Article  CAS  Google Scholar 

  30. L.D. Zhu, Z.C. Yang, B. Xin, S.H. Wang, G.R. Meng, J.S. Ning, and P.S. Xue, Microstructure and Mechanical Properties of Parts Formed by Ultrasonic Vibration-Assisted Laser Cladding of Inconel 718, J. Surf. Coat. Technol., 2021, 410, p 126964. https://doi.org/10.1016/j.surfcoat.2021.126964

    Article  CAS  Google Scholar 

  31. Y.H. Cui, C. Xie, J.L. Liu, S.R. Guo, and L.J. Cui, Mechanical and Corrosion Resistance Analysis of Laser Cladding Layer, J. Sci. Eng. Compos. Mater., 2022, 29(1), p 358–363. https://doi.org/10.1515/secm-2022-0161

    Article  CAS  Google Scholar 

  32. D. Wolf, V. Yamakov, S.R. Phillpot, and A.K. Mukherjee, Deformation Mechanism and Inverse Hall–Petch behavior in Nanocrystalline Materials, J. Int. J. Mater. Res., 2003, 94(10), p 1091–1097. https://doi.org/10.1515/ijmr-2003-0199

    Article  CAS  Google Scholar 

  33. R.C. Chen, Z.Z. Zheng, N. Li, J.J. Li, and F. Feng, In-Situ Investigation of Phase Transformation Behaviors of 300M Steel in Continuous Cooling Process, J. Mater. Charact., 2018, 144, p 400–410. https://doi.org/10.1016/j.matchar.2018.07.034

    Article  CAS  Google Scholar 

  34. R.A. Rahman Rashid, C.J. Barr, S. Palanisamy, K.A. Nazari, N. Orchowski, N. Matthews, and M.S. Dargusch, Effect of Clad Orientation on the Mechanical Properties of Laser-Clad Repaired Ultra-High Strength 300 M Steel, J. Surf. Coat. Technol., 2019, 380, p 125090. https://doi.org/10.1016/j.surfcoat.2019.125090

    Article  CAS  Google Scholar 

  35. Y.X. Liu, R.C. Wang, C.Q. Peng, Z.Y. Cai, Z.H. Zhou, X.J. Li, and X.Y. Cao, Microstructural Evolution and Mechanical Performance of In-Situ TiB2/AlSi10Mg Composite Manufactured by Selective Laser Melting, J. Alloys Compd., 2021, 853, p 157287. https://doi.org/10.1016/j.jallcom.2020.157287

    Article  CAS  Google Scholar 

  36. J.Q. Zhang, J.B. Lei, Z.J. Gu, F.L. Tantai, H.F. Tian, J.J. Han, and Y. Fang, Effect of WC-12Co Content on Wear and Electrochemical Corrosion Properties of Ni-Cu/WC-12Co Composite Coatings Deposited by Laser Cladding, J. Surf. Coat. Technol., 2020, 393, p 125807. https://doi.org/10.1016/j.surfcoat.2020.125807

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Foundation of Key Laboratory of National Defense Science and Technology (No. JCKY61420052022), National Natural Science Foundation of China (No.52075544), Fully mechanized mining hydraulic support remanufacturing key technology research “scientist + engineer” team (No.2023KXJ-123), Innovation Fund for graduate students of Shaanxi University of Technology: Mechanism and method of multi-energy field cooperative regulation of coating shape in laser cladding additive manufacturing (No. SLGYCX2311), General Special Research Project of Shaanxi Provincial Department of Education (No. 22JK0312), Research Fund of Shaanxi University of Technology (No. SLG2123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linsen Shu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, L., Zhang, C., Li, P. et al. Effects of Different Powder Feeding Rates on Microstructure and Mechanical Properties of IN718 Cladding Coating. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08621-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08621-x

Keywords

Navigation