Skip to main content

Advertisement

Log in

Study on Residual Stress Distribution in Stellite−6 Cladding Layers on 420 Steel Steam Turbine Blades

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To evaluate the residual stresses of Stellite−6 dissimilar layers on the water erosion-prone regions of low-pressure last-stage blades, the effects of the microstructure, microhardness and cladding passes on the residual stress distributions of cladding layers are investigated carefully. Although the cladded blades undergo stress relief heat treatment, the residual tensile stress in the cladding Stellite−6 layer is 200 ~ 300 MPa, and the residual compressive stress in the substrate is − 100 ~ − 150 MPa. Due to the microstructure and property mismatch between the cladding layer and substrate, there is a great residual stress gradient at the interface of the Stellite−6 alloy layer and substrate. The addition of cladding passes on the concave side of the blade can increase the peak tensile stress to 374 MPa in the other side cladding layer; however, the cladding pass significantly reduces the residual stress gradient at the interface of the Stellite−6 alloy layer and substrate. The reduced residual stress gradient of the interface indicates that adding a cladding layer is beneficial for improving blade service safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ahmad, M. Schatz, and T. Yamagata, Experimental Study on Erosion Initiation via Liquid Droplet Impingement on Smooth and Rough Walls, Wear, 2020, 452–453, p 203316. https://doi.org/10.1016/j.wear.2020.203316

    Article  CAS  Google Scholar 

  2. B. Luiset, F. Sanchette, and A. Billard et al., Mechanisms of Stainless Steels Erosion by Water Droplets, Wear, 2013, 303(1–2), p 459–464. https://doi.org/10.1016/j.wear.2013.03.045

    Article  CAS  Google Scholar 

  3. R. Singh, D. Kumar, and S.K. Mishra et al., Laser Cladding of Stellite 6 on Stainless Steel to Enhance Solid Particle Erosion and Cavitation Resistance, Surf. Coat. Technol., 2014, 251, p 87–97. https://doi.org/10.1016/j.surfcoat.2014.04.008

    Article  CAS  Google Scholar 

  4. P.H. Shipway and K. Gupta, The Potential of WC-Co Hard Metals and HVOF Sprayed Coatings to Combat Water-Droplet Erosion, Wear, 2011, 271, p 1418–1425. https://doi.org/10.1016/j.wear.2010.12.058

    Article  CAS  Google Scholar 

  5. G.P. Rajeev, M.R. Rahul, and M. Kamaraj et al., Microstructure and High Temperature Mechanical Properties of Wire arc Additively Deposited Stellite 6 Alloy, Materialia, 2020, 12, p 100724. https://doi.org/10.1016/j.mtla.2020.100724

    Article  CAS  Google Scholar 

  6. Y.P. Ding, R. Li, and J.H. Yao et al., Stellite Alloy Mixture Hardfacing via Laser Cladding for Control Valve Seat Sealing Surfaces, Surf. Coat. Technol., 2017, 329, p 97–108. https://doi.org/10.1016/j.surfcoat.2017.09.018

    Article  CAS  Google Scholar 

  7. Y. Javadia, J.N. Walshb, and A. Elrefaey et al., Measurement of Residual Stresses Induced by Sequential Weld Buttering and Cladding Operations Involving a 2.25Cr-1Mo Substrate Material, Int. J. Press. Vessel. Pip., 2017, 154, p 58–74. https://doi.org/10.1016/j.ijpvp.2017.06.003

    Article  CAS  Google Scholar 

  8. S.H. Lee, S.H. Kim, and Y.S. Chang et al., Fatigue Life Assessment of Railway Rail Subjected to Welding Residual and Contact Stresses, J. Mech. Sci. Technol., 2014, 28, p 4483–4491. https://doi.org/10.1007/s12206-014-1016-3

    Article  Google Scholar 

  9. H.X. Deng, H.J. Shi, and S. Tsuruok et al., Influence of Welding Technique and Temperature on Fatigue Properties of Steel Deposited with Co-based Alloy Hardfacing Coating, Int. J. Fatigue, 2012, 35, p 63–70. https://doi.org/10.1016/j.ijfatigue.2010.11.016

    Article  CAS  Google Scholar 

  10. T. Roy, A. Paradowska, and R. Abrahams, Residual Stress in Laser Cladded Heavy-Haul Rails Investigated by Neutron Diffraction, J. Mater. Proc. Technol., 2020, 278, p 116511. https://doi.org/10.1016/j.jmatprotec.2019.116511

    Article  CAS  Google Scholar 

  11. P. Bendeich, N. Alam, and M. Brandt, Residual Stress Measurements in Laser Clad Repaired Low Pressure Turbine Blades for the Power Industry, Mater. Sci. Eng. A, 2006, 437, p 70–74. https://doi.org/10.1016/j.msea.2006.04.065

    Article  CAS  Google Scholar 

  12. A. Paradowska, J. Price, and R. Ibrahim et al., Residual Stress Measurements by Neutron Diffraction in Multi-bead Welding, Phys. B Condens. Matter., 2006, 358, p 890–893. https://doi.org/10.1016/j.physb.2006.05.241

    Article  CAS  Google Scholar 

  13. Y.C. Fang, X.F. Cui, and Z.B. Cai, Influence of La2O3 Addition on Nano Indentation Hardness and Residual Stress of Stellite 6 Coating Prepared by Plasma Cladding, J. Rare Earths, 2018, 36, p 873–878. https://doi.org/10.1016/j.jre.2018.03.008

    Article  CAS  Google Scholar 

  14. K. Vasylevskyi, I. Tsukrov, and B. Drach et al., Identification of Process-Induced Residual Stresses in 3D Woven Carbon/Epoxy Composites by Combination of FEA and Blind Hole Drilling, Compos. Part A Appl. Sci. Manuf., 2020, 130, p 105734. https://doi.org/10.1016/j.compositesa.2019.105734

    Article  Google Scholar 

  15. M. Babaeeian and M. Mohammadimehr, Investigation of the Time Elapsed Effect on Residual Stress Measurement in a Composite Plate by DIC Method, Opt. Lasers Eng., 2020, 128, p 106002. https://doi.org/10.1016/j.optlaseng.2020.106002

    Article  Google Scholar 

  16. J. Ribeiro, J. Monteiro, and H. Lopes et al., Moiré Interferometry Assessment of Residual Stress Variation in Depth on a Shot Peened Surface, Strain, 2011, 47(s1), p 542–550. https://doi.org/10.1111/j.1475-1305.2009.00653.x

    Article  CAS  Google Scholar 

  17. D. Peral, C. Correa, and M. Diaz et al., Measured Strains Correction for Eccentric Holes in the Determination of Non-uniform Residual Stresses by the Hole Drilling Strain Gauge Method, Mater. Des., 2017, 132, p 302–313. https://doi.org/10.1016/j.matdes.2017.06.051

    Article  Google Scholar 

  18. S. Das Banik, S. Kumar, and P. Kumar Singh et al., Distortion and Residual Stresses in Thick Plate Weld Joint of Austenitic Stainless Steel: Experiments and Analysis, J. Mater. Process. Technol., 2021, 289, p 116944. https://doi.org/10.1016/j.jmatprotec.2020.116944

    Article  CAS  Google Scholar 

  19. S. Li, L. Hu, and P.Y. Dai et al., Influence of the Groove Shape on Welding Residual Stresses in P92/SUS304 Dissimilar Metal Butt-Welded Joints, J. Manuf. Process., 2021, 66, p 376–386. https://doi.org/10.1016/j.jmapro.2021.04.030

    Article  Google Scholar 

  20. Q. Chen, J. Yang, and X. Liu et al., Effect of the Groove Type When Considering a Thermometallurgical-Mechanical Model of the Welding Residual Stress and Deformation in an S355JR-316L Dissimilar Welded Joint, J. Manuf. Process., 2019, 45, p 290–303. https://doi.org/10.1016/j.jmapro.2019.07.011

    Article  Google Scholar 

  21. P.K. Taraphdar, R. Kumar, and A. Giri et al., Residual Stress Distribution in Thick Double-V Butt Welds with Varying Groove Configuration, Restraints and Mechanical Tensioning, J. Manuf. Process., 2021, 68, p 1405–1417. https://doi.org/10.1016/j.jmapro.2021.06.046

    Article  Google Scholar 

  22. D. Akbari and I. Sattari-Far, Effect of the Welding Heat Input on Residual Stresses in Butt-Welds of Dissimilar Pipe Joints, Int. J. Press. Vessel. Pip., 2009, 86, p 769–776. https://doi.org/10.1016/j.ijpvp.2009.07.005

    Article  CAS  Google Scholar 

  23. R. Seifi and D. Salimi-Majd, Effects of Plasticity on Residual Stresses Measurement by Hole Drilling Method, Mech. Mater., 2012, 53, p 72–79. https://doi.org/10.1016/j.mechmat.2012.05.009

    Article  Google Scholar 

  24. A. Niku-Lari, J. Lu, and J.F. Flavenot, Measurement of Residual-Stress Distribution by the Incremental Hole-Drilling Method, J. Mech. Work. Technol., 1985, 11(2), p 167–188. https://doi.org/10.1016/0378-3804(85)90023-3

    Article  Google Scholar 

  25. Y. Peng, J. Zhao, and L.S. Chen, Residual Stress Measurement Combining Blind-Hole Drilling and Digital Image Correlation Approach, J. Constr. Steel Res., 2021, 186, p 106346. https://doi.org/10.1016/j.jcsr.2020.106346

    Article  Google Scholar 

  26. G.S. Schajer, Application of Finite Element Calculation to Residual Stress Measurements, J. Constr. Steel Res., 1988, 103, p 157. https://doi.org/10.1115/1.3224988

    Article  Google Scholar 

  27. C. Zhao, D. Stewart, and J. Jiang et al., A Comparative Assessment of Iron and Cobalt-Based Hard-Facing Alloy Deformation Using HR-EBSD and HR-DIC, Acta Mater., 2018, 159, p 173–186. https://doi.org/10.1016/j.actamat.2018.08.021

    Article  CAS  Google Scholar 

  28. M.S. Sawant and N.K. Jain, Investigations on Wear Characteristics of Stellite Coating by Micro-plasma Transferred arc Powder Deposition Process, Wear, 2017, 378–379, p 155–164. https://doi.org/10.1016/j.wear.2017.02.041

    Article  CAS  Google Scholar 

  29. A. Gholipour, M. Shamanian, and F. Ashrafizadeh, Microstructure and Wear Behavior of Stellite 6 Cladding on 17-4 PH Stainless Steel, J. Alloys Compd., 2011, 509, p 4905–4909. https://doi.org/10.1016/j.jallcom.2010.09.216

    Article  CAS  Google Scholar 

  30. L. Reddy, S.P. Preston, and P.H. Shipway et al., Process Parameter Optimisation of Laser Clad Iron Based Alloy: Predictive Models of Deposition Efficiency, Porosity and Dilution, Surf. Coat. Technol., 2018, 349, p 198–207. https://doi.org/10.1016/j.surfcoat.2018.05.054

    Article  CAS  Google Scholar 

  31. E. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. B, 1951, 64(9), p 747. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  32. B.S. Huang, J.Q. Liu, and S.S. Zhang et al., Effect of Post-Weld Heat Treatment on the Residual Stress and Deformation of 20/0Cr18Ni9 Dissimilar Metal Welded Joint by Experiments and Simulations, J. Mater. Res. Technol., 2020, 9(3), p 6186–6200. https://doi.org/10.1016/j.jmrt.2020.04.022

    Article  CAS  Google Scholar 

  33. D. Thibault, P. Bocher, and M. Thomas et al., Residual Stress Characterization in Low Transformation Temperature 13%Cr-4%Ni Stainless Steel Weld by Neutron Diffraction and the Contour Method, Mater. Sci. Eng. A, 2010, 527, p 6205–6210. https://doi.org/10.1016/j.msea.2010.06.035

    Article  CAS  Google Scholar 

  34. H. Eisazadeh, A. Achuthan, and J.A. Goldak et al., Effect of Material Properties and Mechanical Tensioning Load on Residual Stress Formation in GTA 304-A36 Dissimilar Weld, J. Mater. Process. Technol., 2015, 222, p 344–355. https://doi.org/10.1016/j.jmatprotec.2015.03.021

    Article  CAS  Google Scholar 

  35. A. Suárez, J.M. Amado, and M.J. Tobar et al., Study of Residual Stresses Generated Inside Laser Cladded Plates Using FEM and Diffraction of Synchrotron Radiation, Surf. Coat. Technol., 2010, 204, p 1983–1988. https://doi.org/10.1016/j.surfcoat.2009.11.037

    Article  CAS  Google Scholar 

  36. W. Ya and B. Pathiraj, Residual Stresses in Stellite 6 Layers Cladded on AISI 420 Steel Plates with a Nd: YAG Laser, J. Laser Appl., 2018, 30(3), p 032007. https://doi.org/10.2351/1.5039858

    Article  CAS  Google Scholar 

  37. G. Benghalia and J. Wood, Material and Residual Stress Considerations Associated with the Autofrettage of Weld Clad Components, Int. J. Press. Vessel. Pip., 2016, 139–140, p 146–158. https://doi.org/10.1016/j.ijpvp.2016.02.003

    Article  CAS  Google Scholar 

  38. Y.X. Wu, E. Bousser, and T. Schmitt et al., Thermal Stability of a Stellite/Steel Hardfacing Interface during Long-Term Aging, Mater. Charact., 2019, 154, p 181–192. https://doi.org/10.1016/j.matchar.2019.05.025

    Article  CAS  Google Scholar 

  39. D.Q. Wang, M.L. Zhu, and F.Z. Xuan, Correlation of Local Strain with Microstructures Around Fusion Zone of a Cr-Ni-Mo-V Steel Welded Joint, Mater. Sci. Eng. A, 2017, 618, p 205–212. https://doi.org/10.1016/j.msea.2017.01.015

    Article  CAS  Google Scholar 

  40. W.C. Jiang, W. Chen, and W. Woo, Effects of Low-Temperature Transformation and Transformation-Induced Plasticity on Weld Residual Stresses: Numerical Study and Neutron Diffraction Measurement, Mater. Des., 2018, 147, p 65–79. https://doi.org/10.1016/j.matdes.2018.03.032

    Article  CAS  Google Scholar 

  41. M. Srivastava, S. Hloch, and L. Krejci et al., Residual Stress and Surface Properties of Stainless Steel Welded Joints Induced by Ultrasonic Pulsed Water Jet Peening, Measurement, 2018, 127, p 453–462. https://doi.org/10.1016/j.measurement.2018.06.012

    Article  Google Scholar 

  42. S. Chen, J. Liu, and T. Chan, Material Properties and Residual Stresses of Welded High Strength Steel and Hybrid I-Sections, Eng. Struct., 2023, 276, p 115293. https://doi.org/10.1016/j.engstruct.2022.115293

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1105803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, Z., Liu, Y. et al. Study on Residual Stress Distribution in Stellite−6 Cladding Layers on 420 Steel Steam Turbine Blades. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08560-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08560-7

Keywords

Navigation