Skip to main content
Log in

High-Temperature Phase Transformation and Corrosion Behavior of Zn-Ni Coated Press Hardenable Steels

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot stamping of steel is an innovative process for producing components of higher strength with a significant weight reduction. Conventional hot stamping process is carried out at an elevated temperature in the range of 800 to 950 °C in atmospheric condition. So, a coating is a must to restrict high temperature oxidation and decarburization of the steel substrate. Majorly, Al-Si coating and Zn-based coatings are used for the purpose. However, Al-Si-based coatings are not able to provide sacrificial cathodic protection to steel substrate and the Zn-based coating suffer from the problem of microcracking. In the present study, the pre-Ni coated galvanized boron steels are investigated to understand high temperature phase transformation during austenitization step. Thermodynamic calculations along with Gleeble heat treatment experiments and coating characterizations with SEM, EDS, WDS and XRD shows initial melting of the coating. Subsequent Fe-enrichment in the coating has led to formation of BCC phase which is high melting as well as softer phase compared to Ni-Zn intermetallic. Moreover, the corrosion performance of the prior Ni coated galvanized steel has been evaluated. The presence of zinc in the coating shows sacrificial corrosion protection behavior and the Ni and Fe in the coating have further improved the corrosion rate owing to their barrier protection to the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. A. Naganathan and L. Penter, Hot stamping, sheet metal forming, Processes and Applicationsed. T. Altan, A.E. Tekkaya Ed., ASM International, 2012, p 133–146

    Google Scholar 

  2. H. Karbasian and A.E. Tekkaya, A Review on Hot Stamping, J. Mater. Process. Technol., 2010, 210(15), p 2103–2118.

    Article  CAS  Google Scholar 

  3. T. Kurz, P. Larour, J. Lackner, T. Steck, and G. Jesner, Press-Hardening of Zinc Coated Steel—Characterization of a New Material for a New Process, IOP Conf. Ser. Mater. Sci. Eng., 2016, 159(1), 012025.

    Article  Google Scholar 

  4. P. Drillet, R. Grigorieva, G. Leuillier, and T. Vietoris, Study of cracks propagation inside the steel on press hardened steel zinc based coatings (2013)

  5. M. Naderi, V. Uthaisangsuk, U. Prahl, and W. Bleck, A Numerical and Experimental Investigation into Hot Stamping of Boron Alloyed Heat Treated Steels, Steel Res. Int., 2008, 79(2), p 77–84.

    Article  CAS  Google Scholar 

  6. Z. Gui, W. Liang, and Y. Zhang, Enhancing Ductility of the Al-Si Coating on Hot Stamping Steel by Controlling the Fe-Al Phase Transformation during Austenitization, Sci. China Technol. Sci., 2014, 57(9), p 1785–1793.

    Article  CAS  Google Scholar 

  7. S.J. Grauer, E.J.F.R. Caron, N.L. Chester, M.A. Wells, and K.J. Daun, Investigation of Melting in the Al–Si Coating of a Boron Steel Sheet by Differential Scanning Calorimetry, J. Mater. Process. Technol., 2015, 216, p 89–94.

    Article  CAS  Google Scholar 

  8. R. Grigorieva, P. Drillet, J.M. Mataigne, and A. Redjaïmia, Phase Transformations in the Al-Si Coating during the Austenitization Step, Solid State Phenom., 2011, 172–174, p 784–790.

    Article  Google Scholar 

  9. C.W. Lee, W.S. Choi, Y.R. Cho, and B.C. De Cooman, Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel, Metall. Mater. Trans. A, 2016, 47(6), p 2875–2884.

    Article  CAS  Google Scholar 

  10. W.-J. Cheng and C.-J. Wang, Observation of High-Temperature Phase Transformation in the Si-Modified aluminide Coating on Mild Steel using EBSD, Mater. Charact., 2010, 61(4), p 467–473.

    Article  CAS  Google Scholar 

  11. T. Maitra and S.P. Gupta, Intermetallic Compound Formation in Fe-Al-Si Ternary System: Part II, Mater. Charact., 2002, 49(4), p 293–311.

    Article  CAS  Google Scholar 

  12. C.W. Lee, W.S. Choi, Y.R. Cho, and B.C. De Cooman, Microstructure Evolution of a 55 wt.% Al-Zn Coating on Press Hardening Steel during Rapid Heating, Surf. Coat. Technol., 2015, 281, p 35–43.

    Article  CAS  Google Scholar 

  13. Z.-X. Gui, K. Wang, Y.-S. Zhang, and B. Zhu, Cracking and Interfacial Debonding of the Al-Si Coating in Hot Stamping of Pre-Coated Boron Steel, Appl. Surf. Sci., 2014, 316, p 595–603.

    Article  CAS  Google Scholar 

  14. V. Janik, Y. Lan, P. Beentjes, D. Norman, G. Hensen, and S. Sridhar, Zn Diffusion and α-Fe(Zn) Layer Growth During Annealing of Zn-Coated B Steel, Metall. Mater. Trans. A, 2016, 47(1), p 400–411.

    Article  CAS  Google Scholar 

  15. J. Nakano, D.V. Malakhov, S. Yamaguchi, and G.R. Purdy, A Full Thermodynamic Optimization of the Zn-Fe-Al System Within the 420–500 °C Temperature Range, Calphad, 2007, 31(1), p 125–140.

    Article  CAS  Google Scholar 

  16. X. Wang, Y. Xie, Z. Liu, Q. Sun, X. Shen, Q. Zhang, Z. Hu, and R.D.K. Misra, Zn-Induced Liquid Metal Embrittlement and Mechanical Properties of Advanced High-Strength Steel with Resistance Spot Weld, Mater. Sci. Eng. A, 2022, 843, 143088.

    Article  CAS  Google Scholar 

  17. C.W. Lee, D.W. Fan, I.R. Sohn, S.-J. Lee, and B.C. De Cooman, Liquid-Metal-Induced Embrittlement of Zn-Coated Hot Stamping Steel, Metall. Mater. Trans. A, 2012, 43(13), p 5122–5127.

    Article  CAS  Google Scholar 

  18. P.J.L. Fernandes, R.E. Clegg, and D.R.H. Jones, Failure by Liquid Metal Induced Embrittlement, Eng. Fail. Anal., 1994, 1(1), p 51–63.

    Article  CAS  Google Scholar 

  19. A. Chakraborty, R. Ghosh, M. Sudan, and A. Mondal, Improvement in Hot Dip Galvanized Coating Microstructure and Properties by Pre-Metallic Deposition on Steel Surface: A Comprehensive Review, Surf. Coat. Technol., 2022, 449, 128972.

    Article  CAS  Google Scholar 

  20. A. Mondal, A.K. Halder, and M. Dutta, Effect of Al on Phase Evolution in Prior-Ni Coated Galvanized Steel: Thermodynamic and Kinetic Assessment, J. Alloys Compd., 2020, 830, 154351.

    Article  CAS  Google Scholar 

  21. A. Chakraborty, A. Mondal, A.K. Halder, M. Dutta, and S.B. Singh, Evolution of Microstructure of Zinc-Nickel Alloy Coating during Hot Stamping of Boron Added Steels, J. Alloys Compd., 2019, 794, p 672–682.

    Article  CAS  Google Scholar 

  22. A. Mondal, A. Chakraborty, S. Bysakh, M. Dutta, and S.B. Singh, Nucleation and Growth Behaviour of Iron-Zinc Intermetallic Phases in Prior-Copper Coated Galvanized Steels, J. Alloys Compd., 2017, 699, p 947–958.

    Article  CAS  Google Scholar 

  23. M. Manna and M. Dutta, Effect of Prior Electro or Electroless Ni Plating Layer in Galvanizing and Galvannealing Behavior of High Strength Steel Sheet, Surf. Coat. Technol., 2017, 316, p 48–58.

    Article  CAS  Google Scholar 

  24. A. Chakraborty, A. Mondal, M. Dutta, and S.B. Singh, Suppression of Selective Surface Oxidation in DP Steels by Effective Shielding of Copper—Kinetic Simulation and Experimental Validation, Surf. Coat. Technol., 2016, 306, p 473–479.

    Article  CAS  Google Scholar 

  25. M. Manna and M. Dutta, Improvement in Galvanization and Galvannealing Characteristics of DP 590 Steel by Prior Cu or Cu-Sn Flash Coating, Surf. Coat. Technol., 2014, 251, p 29–37.

    Article  CAS  Google Scholar 

  26. R. Sa-nguanmoo, E. Nisaratanaporn, and Y. Boonyongmaneerat, Hot-Dip Galvanization with Pulse-Electrodeposited Nickel Pre-Coatings, Corros. Sci., 2011, 53(1), p 122–126.

    Article  CAS  Google Scholar 

  27. C. Che, J. Lu, G. Kong, Q. Xu, and R. Sui, Influence of Ni-Electrodeposited Pretreatment on Galvanized Coatings of Reactive Steels, J. Wuhan Univ. Technol. Mater. Sci. Ed., 2007, 22(2), p 221–224.

    Article  CAS  Google Scholar 

  28. S.M.A. Shibli and R. Manu, Process and Performance Improvement of Hot Dip Zinc Coating by Dispersed Nickel in the under Layer, Surf. Coat. Technol., 2005, 197(1), p 103–108.

    Article  CAS  Google Scholar 

  29. K. Sarkar, A. Mondal, A. Chakraborty, M. Sanbui, N. Rani, and M. Dutta, Investigation of Microstructure and Corrosion Behaviour of Prior Nickel Deposited Galvanised Steels, Surf. Coat. Technol., 2018, 348, p 64–72.

    Article  CAS  Google Scholar 

  30. J. Guangrui, W. Haiquan, T. Huaxiang, and Z. Jian, Influence of Prior Nickel Plating on Selective Oxidation Behavior of a C-Mn-Si High Strength Steel, Galvatech, 2020, p 384–393

    Google Scholar 

  31. A. Chakraborty, P. Govardhana, A. Mondal, T. Laha, M. Dutta, and S.B. Singh, Microstructural Development of Prior Nickel Coated Hot Dipped Galvanised Coatings, J. Alloys Compd., 2017, 699, p 648–656.

    Article  CAS  Google Scholar 

  32. S.M.A. Shibli, B.N. Meena, and R. Remya, A Review on Recent Approaches in the Field of Hot Dip Zinc Galvanizing Process, Surf. Coat. Technol., 2015, 262, p 210–215.

    Article  CAS  Google Scholar 

  33. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 4th ed. CRC Press, 2021.

    Book  Google Scholar 

  34. S. Anwar, Y. Zhang, and F. Khan, Electrochemical Behaviour and Analysis of Zn and Zn-Ni Alloy Anti-Corrosive Coatings Deposited from Citrate Baths, RSC Adv., 2018, 8(51), p 28861–28873.

    Article  CAS  Google Scholar 

  35. F. Chouia, A. Chala, A. Lakel, and T. Sahraoui, Morphology and Corrosion Behavior of Zn-Ni Layers Electrodeposited on Low Alloy Carbon Steel Substrate, Annales de Chimie Science des Matériaux, 2021, 45(3), p 225–230.

    Article  Google Scholar 

  36. V.R. Rao, K.V. Bangera, and A.C. Hegde, Magnetically Induced Electrodeposition of Zn-Ni Alloy Coatings and Their Corrosion Behaviors, J. Magn. Magn. Mater., 2013, 345, p 48–54.

    Article  CAS  Google Scholar 

  37. K. Han, I. Lee, I. Ohnuma, K. Okuda, and R. Kainuma, Micro-Vickers Hardness of Intermetallic Compounds in the Zn-Rich Portion of Zn–Fe Binary System, ISIJ Int., 2018, 58(9), p 1578–1583.

    Article  CAS  Google Scholar 

  38. E. McCafferty, Validation of Corrosion Rates Measured by the Tafel Extrapolation Method, Corros. Sci., 2005, 47(12), p 3202–3215.

    Article  CAS  Google Scholar 

  39. H. Kancharla, G.K. Mandal, S.S. Singh, and K. Mondal, Effect of Prior Copper-Coating on the Microstructural Development and Corrosion Behavior of Hot-Dip Galvanized Mn Containing High Strength Steel Sheet, Surf. Coat. Technol., 2022, 437, 128347.

    Article  CAS  Google Scholar 

  40. H.M. AbdEl-Lateef, A.-R. El-Sayed, and H.S. Mohran, Role of Ni Content in Improvement of Corrosion Resistance of Zn-Ni Alloy in 3.5% NaCl Solution. Part I: Polarization and Impedance Studies, Trans. Nonferrous Met. Soc. China, 2015, 25(8), p 2807–2816.

    Article  CAS  Google Scholar 

  41. A. Maciej, G. Nawrat, W. Simka, and J. Piotrowski, Formation of Compositionally Modulated Zn-Ni Alloy Coatings on Steel, Mater. Chem. Phys., 2012, 132(2), p 1095–1102.

    Article  CAS  Google Scholar 

  42. K. Sarkar, A. Mondal, A. Chakraborty, N. Rani, and M. Dutta, Corrosion Behaviour of Prior Nickel Coated Galvanised Steels, Galvatech, 2017, p 597–603

    Google Scholar 

  43. F. Vucko, M. Prestat, L. Holzer, B. Tribollet, K. Pélissier, and D. Thierry, Anodic Degradation of Zn-Ni Coatings in Moderately Alkaline NaCl Solution, Mater. Lett., 2021, 293, 129701.

    Article  CAS  Google Scholar 

  44. R. Vera, F. Guerrero, D. Delgado, and R. Araya, Atmospheric Corrosion of Galvanized Steel and Precipitation Runoff from Zinc in a Marine Environment, J. Braz. Chem. Soc., 2013, 24, p 449–458.

    Article  CAS  Google Scholar 

  45. C. Ke, Q. Zhao, Y. Zhang, X. Yang, and W. Xiao, Corrosion-Engineered Stereoscopic Nano-Microflower FeOOH for Efficient Electrocatalysis Toward Oxygen Evolution Reaction, J. Alloys Compd., 2023, 955, 170131.

    Article  CAS  Google Scholar 

  46. S. Fonna, I.B.M. Ibrahim, G. Gunawarman, S. Huzni, M. Ikhsan, and S. Thalib, Investigation of Corrosion Products Formed on the Surface of Carbon Steel Exposed in Banda Aceh’s Atmosphere, Heliyon, 2021, 7, e06608.

    Article  CAS  Google Scholar 

  47. D.C. Cook, S.J. Oh, R. Balasubramanian, and M. Yamashita, The Role of Goethite in the Formation of the Protective Corrosion Layer on Steels, Hyperfine Interact., 1999, 122(1), p 59–70.

    Article  CAS  Google Scholar 

  48. Y.Y. Chen, S.C. Chung, and H.C. Shih, Studies on the Initial Stages of Zinc Atmospheric Corrosion in the Presence of Chloride, Corros. Sci., 2006, 48(11), p 3547–3564.

    Article  CAS  Google Scholar 

  49. A.P. Yadav, A. Nishikata, and T. Tsuru, Degradation Mechanism of Galvanized Steel in Wet–Dry Cyclic Environment Containing Chloride Ions, Corros. Sci., 2004, 46(2), p 361–376.

    Article  CAS  Google Scholar 

  50. M. Wang, L. Jiang, E. Kim, and S. Hahn, Electronic Structure and Optical Properties of Zn(OH)2: LDA+U Calculations and Intense Yellow Luminescence, RSC Adv., 2015, 5, p 87496–87503.

    Article  CAS  Google Scholar 

  51. A. Demoulin, C. Trigance, D. Neff, E. Foy, P. Dillmann, and V. L’Hostis, The Evolution of the Corrosion of Iron in Hydraulic Binders Analysed from 46- and 260-Year-Old Buildings, Corros. Sci., 2010, 52(10), p 3168–3179.

    Article  CAS  Google Scholar 

  52. D.L. De Faria, S. VenâncioSilva, and M. De Oliveira, Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides, J. Raman Spectrosc., 1997, 28(11), p 873–878.

    Article  Google Scholar 

  53. P. Colomban, S. Cherifi, and G. Despert, Raman Identification of Corrosion Products on Automotive Galvanized Steel Sheets, J. Raman Spectrosc., 2008, 39, p 881–886.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avik Mondal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, R., Sarkar, K., Halder, A.K. et al. High-Temperature Phase Transformation and Corrosion Behavior of Zn-Ni Coated Press Hardenable Steels. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08528-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08528-7

Keywords

Navigation