Skip to main content
Log in

Effect of 0.45 wt.% Nd Addition on the Corrosion Resistance of Extruded Mg-6Al-3Sn-2Zn Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of Nd microalloying on the microstructure and corrosion behavior of extruded Mg-6Al-3Sn-2Zn (ATZ632) alloys was investigated. The addition of Nd (0.45 wt.%) into the ATZ632 alloy resulted in the formation of a NdZn1.66Al2.34 phase with a relatively low Volta potential of 68 ~ 78 mV. The polarization resistance of this alloy was calculated to be 564.33 ohm cm2, which is approximately 7.7 times slower than that of the ATZ632 alloy. The main factors for improving the corrosion resistance of the extruded ATZ632 alloy with 0.45 wt.% Nd addition are: (1) the Nd2O3 prevention of Cl from passing through the corrosion film; (2) the formation of denser and more uniform corrosion films; and (3) the grain refinement and wakening of the (0001) base-plane texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Song, J. She, D. Chen, and F. Pan, Latest Research Advances on Magnesium and Magnesium Alloys Worldwide, J. Magn. Alloys, 2020, 8(1), p 1–41.

    Article  CAS  Google Scholar 

  2. B.J. Lv, S. Wang, T.W. Xu, and F. Guo, Effects of Minor Nd and Er Additions on the Precipitation Evolution and Dynamic Recrystallization Behavior of Mg-6.0Zn-0.5Mn Alloy, J. Magn. Alloys, 2021, 9(3), p 840–852.

    Article  CAS  Google Scholar 

  3. S.W. Bae, S.H. Kim, J.U. Lee, W.K. Jo, W.H. Hong, W. Kim, and S.H. Park, Improvement of Mechanical Properties and Reduction of Yield Asymmetry of Extruded Mg-Al-Zn Alloy through Sn Addition, J. Alloys Compd., 2018, 766, p 748–758.

    Article  CAS  Google Scholar 

  4. H.Y. Wu, D.F. Zhang, L.Y. Jiang, J.K. Feng, Y. Zhao, and F.S. Pan, Effects of Zn Addition on Microstructure and Mechanical Properties of Mg-8AI-2Sn Alloy, Rare Met. Mater. Eng., 2019, 48(7), p 2091–2098.

    CAS  Google Scholar 

  5. S. Wang, F.H. Gao, B.J. Lv, N. Cui, and F. Guo, Effects of 0.5 wt.% Nd Addition on the Microstructure and Mechanical Properties of As-Extruded and Aged Mg-6Al-3Sn-2Zn Alloys, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07073-z

    Article  Google Scholar 

  6. B. Mingo, R. Arrabal, M. Mohedano, A. Pardo, E. Matykina, and A. Rivas, Enhanced Corrosion Resistance of AZ91 Alloy Produced by Semisolid Metal Processing, J. Electrochem. Soc., 2015, 162(4), p C180–C188.

    Article  CAS  Google Scholar 

  7. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, and S. Feliú, Influence of Microstructure and Composition on the Corrosion Behaviour of Mg/Al Alloys in Chloride Media, Electrochim. Acta, 2008, 53(27), p 7890–7902.

    Article  CAS  Google Scholar 

  8. J. Xie, J. Zhang, Z. Zhang, Z. Yu, Z. Xu, R. Wang, D. Fang, X. Zhang, X. Zhang, and R. Wu, Corrosion Mechanism of Mg Alloys Involving Elongated Long-Period Stacking Ordered Phase and Intragranular Lamellar Structure, J. Mater. Sci. Technol., 2023, 151, p 190–203.

    Article  Google Scholar 

  9. J. Kwon, S.M. Baek, H. Jung, J.C. Kim, S.Y. Lee, and S.S. Park, Role of Microalloyed Sm in Enhancing the Corrosion Resistance of Hot-Rolled Mg-8Sn-1Al-1Zn Alloy, Corros. Sci., 2021, 185, p 109425.

    Article  CAS  Google Scholar 

  10. H. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H. Xie, A. Atrens, J. Song, G. Huang, and F. Pan, Discharge Properties of Mg-Sn-Y Alloys as Anodes for Mg-Air Batteries, Int. J. Miner. Metall. Mater., 2021, 28(10), p 1705–1715.

    Article  CAS  Google Scholar 

  11. F. Tong, X. Chen, S. Wei, J. Malmström, J. Vella, and W. Gao, Microstructure and Battery Performance of Mg-Zn-Sn Alloys as Anodes for Magnesium-Air Battery, J. Magn. Alloys, 2021, 9(6), p 1967–1976.

    Article  CAS  Google Scholar 

  12. G. Song, A. Atrens, and M. Dargusch, Influence of Microstructure on the Corrosion of Diecast AZ91D, Corros. Sci., 1998, 41(2), p 249–273.

    Article  Google Scholar 

  13. X. Liu, D. Shan, Y. Song, R. Chen, and E. Han, Influences of the Quantity of Mg2Sn Phase on the Corrosion Behavior of Mg-7Sn Magnesium Alloy, Electrochim. Acta, 2011, 56(5), p 2582–2590.

    Article  CAS  Google Scholar 

  14. P. Wang, J. Li, Y. Guo, Z. Yang, F. Xia, and J. Wang, Effect of Tin Addition on Microstructure and Electrochemical Properties of Rolled AZ61-Sn Magnesium Anodic Materials, Rare Met., 2011, 30(6), p 639–643.

    Article  CAS  Google Scholar 

  15. J. Xie, J. Zhang, Z. Zhang, Q. Yang, K. Guan, Y. He, R. Wang, H. Zhang, X. Qiu, and R. Wu, New Insights on the Different Corrosion Mechanisms of Mg Alloys with Solute-Enriched Stacking Faults or Long Period Stacking Ordered Phase, Corros. Sci., 2022, 198, p 110163.

    Article  CAS  Google Scholar 

  16. Q. Zou, Q. Le, X. Chen, Y. Jia, C. Ban, T. Wang, H. Wang, R. Guo, L. Ren, and A. Atrens, The Influence of Ga Alloying on Mg-Al-Zn Alloys as Anode Material for Mg-Air Primary Batteries, Electrochim. Acta, 2022, 401, p 139372.

    Article  CAS  Google Scholar 

  17. L. Liu, F. Yuan, M. Zhao, C. Gao, P. Feng, Y. Yang, Y. Sheng, and C. Shuai, Rare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness, Materials, 2017, 10(5), p 477.

    Article  Google Scholar 

  18. Z. Zhang, J. Xie, J. Zhang, H. Dong, S. Liu, X. Zhang, J. Wang, and R. Wu, Simultaneously Improving Mechanical and Anti-corrosion Properties of Extruded Mg-Al Dilute Alloy via Trace Er Addition, J. Mater. Sci. Technol., 2023, 150, p 49–64.

    Article  Google Scholar 

  19. Y.L. Song, Y.H. Liu, S.R. Yu, X.Y. Zhu, and S.H. Wang, Effect of Neodymium on Microstructure and Corrosion Resistance of AZ91 Magnesium Alloy, J. Mater. Sci., 2007, 42(12), p 4435–4440.

    Article  CAS  Google Scholar 

  20. Z. Yin, R. He, Y. Chen, Z. Yin, K. Yan, K. Wang, H. Yan, H. Song, C. Yin, H. Guan, C. Luo, Z. Hu, and C. Luc, Effects of Surface Micro–galvanic Corrosion and Corrosive Film on the Corrosion Resistance of AZ91-xNd Alloys, Appl. Surf. Sci., 2021, 536, p 147761.

    Article  CAS  Google Scholar 

  21. L. Hong, R. Wang, and X. Zhang, The Role of Nd in Corrosion Properties of Mg-12Gd-2Zn-0.4Zr Alloys, J. Mater. Eng. Perform., 2021, 30, p 6000–6008.

    Article  CAS  Google Scholar 

  22. Y. Luo, Y. Deng, L. Guan, L. Ye, X. Guo, and A. Luo, Effect of Grain Size and Crystal Orientation on the Corrosion Behavior of As-extruded Mg-6Gd-2Y-0.2Zr Alloy, Corros. Sci., 2020, 164, p 108338.

    Article  CAS  Google Scholar 

  23. S. Zhang, B.C. Liu, M.X. Li, H.Y. Wang, and Y.L. Ma, Effect of Microstructures and Textures on Different Surfaces on Corrosion Behavior of an as-Extruded ATZ411 Magnesium Alloy Sheet, Acta Metall. Sin. (English Letters), 2021, 34(8), p 1029–1041.

    Article  CAS  Google Scholar 

  24. D. Mei, S.V. Lamaka, C. Feiler, and M.L. Zheludkevich, The Effect of Small-Molecule Bio-relevant Organic Components at Low Concentration on the Corrosion of Commercially Pure Mg and Mg-0.8Ca Alloy: An Overall Perspective, Corros. Sci., 2019, 153, p 258–271.

    Article  CAS  Google Scholar 

  25. M.I. Jamesh, G. Wu, Y. Zhao, D.R. McKenzie, M.M. Bilek, and P.K. Chu, Electrochemical Corrosion Behavior of Biodegradable Mg-Y-RE and Mg-Zn-Zr Alloys in Ringer’s Solution and Simulated Body Fluid, Corros. Sci., 2015, 91, p 160–184.

    Article  CAS  Google Scholar 

  26. T. Zhang, G. Meng, Y. Shao, Z. Cui, and F. Wang, Corrosion of Hot Extrusion AZ91 Magnesium Alloy. Part II: Effect of Rare Earth Element Neodymium (Nd) on the Corrosion Behavior of Extruded Alloy, Corros. Sci., 2011, 53(9), p 2934–2942.

    Article  CAS  Google Scholar 

  27. Z. Yin, Y. Chen, H. Yan, G.H. Zhou, X.-Q. Wu, and Z. Hu, Effects of the Second Phases on Corrosion Resistance of AZ91-xGd Alloys Treated with Ultrasonic Vibration, J. Alloys Compd., 2019, 783, p 877–885.

    Article  CAS  Google Scholar 

  28. L. Wu, Y.A. Li, Y. Cheng, F. Linghu, F. Jiang, G. Chen, J. Teng, D. Fu, and H. Zhang, Microstructure Evolution and Corrosion Resistance Improvement of Mg-Gd-Y-Zn-Zr Alloys via Surface Hydrogen Treatment, Corros. Sci., 2021, 191, p 109746.

    Article  CAS  Google Scholar 

  29. Q. Liu, G. Chen, S. Zeng, S. Zhang, F. Long, and Q. Shi, The Corrosion Behavior of Mg-9Al-xRE Magnesium Alloys Modified by Friction Stir Processing, J. Alloys Compd., 2021, 851, p 156835.

    Article  CAS  Google Scholar 

  30. J. Chen, J. Wang, E. Han, J. Dong, and W. Ke, AC Impedance Spectroscopy Study of the Corrosion Behavior of an AZ91 Magnesium Alloy in 0.1M Sodium Sulfate Solution, Electrochim. Acta, 2007, 52(9), p 3299–3309.

    Article  CAS  Google Scholar 

  31. J. Yang, J. Peng, E.A. Nyberg, and F. Pan, Effect of Ca Addition on the Corrosion Behavior of Mg-Al-Mn Alloy, Appl. Surf. Sci., 2016, 369, p 92–100.

    Article  CAS  Google Scholar 

  32. Y. Bao, L. Chen, J. Tang, Z. Li, G. Zhao, and C. Zhang, Investigation on Corrosion Behavior and Mechanical Properties of an Extruded Mg-Zn-Al-Sn-Mn Alloy, Mater. Charact., 2021, 180, p 111439.

    Article  CAS  Google Scholar 

  33. Y. Liu, W. Cheng, X. Gu, Y. Liu, Z. Cui, L. Wang, and H. Wang, Tailoring the Microstructural Characteristic and Improving the Corrosion Resistance of Extruded Dilute Mg-0.5Bi-0.5Sn Alloy by Microalloying with Mn, J. Magn. Alloys, 2021, 9(5), p 1656–1668.

    Article  CAS  Google Scholar 

  34. Y. He, R. Wang, L. Yang, L. Yang, H. Liu, X. Wang, C. Peng, and Y. Feng, Influence of Sc on the Microstructure, Degradation Behavior, Biocompatibility in vitro and Mechanical Property of Mg-2Zn-0.2Zr Alloy, Mater. Des., 2022, 221, p 110863.

    Article  CAS  Google Scholar 

  35. P.P. Kumar, A.R. Bharat, B. Sesha Sai, R.J.P. Sarath, P. Akhil, G.P.K. Reddy, V.V. Kondaiah, and B.R. Sunil, Role of Microstructure and Secondary Phase on Corrosion Behavior of Heat Treated AZ Series Magnesium Alloys, Mater. Today Proc., 2019, 18, p 175–181.

    Article  Google Scholar 

  36. B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, and L.Y. Sheng, Effect of Rolling Ratios on the Microstructural Evolution and Corrosion Performance of an As-rolled Mg-8 wt.% Li Alloy, J. Magn. Alloys, 2021, 9(2), p 560–568.

    Article  CAS  Google Scholar 

  37. W. Jiang, J. Wang, W. Zhao, Q. Liu, D. Jiang, and S. Guo, Effect of Sn Addition on the Mechanical Properties and Bio-corrosion Behavior of Cytocompatible Mg-4Zn Based Alloys, J. Magn. Alloys, 2019, 7(1), p 15–26.

    Article  CAS  Google Scholar 

  38. H.B. Yao, Y. Li, A.T.S. Wee, J.S. Pan, and J.W. Chai, Correlation Between the Corrosion Behavior and Corrosion Films Formed on the Surfaces of Mg82−xNi18Ndx (x=0, 5, 15) Amorphous Alloys, Appl. Surf. Sci., 2001, 173(1), p 54–61.

    Article  CAS  Google Scholar 

  39. K.D. Ralston, N. Birbilis, and C.H.J. Davies, Revealing the Relationship Between Grain Size and Corrosion Rate of Metals, Scr. Mater., 2010, 63(12), p 1201–1204.

    Article  CAS  Google Scholar 

  40. X. Li, B. Jiang, J. He, J. Zhang, Z. Jiang, B. Liu, and F. Pan, Improvement of Planar Isotropy, Mechanical Properties and Corrosion Resistance of Extruded Mg-3Al-1Zn Alloy Sheet by Special Grain Re-orientation, J. Alloys Compd., 2017, 721, p 106–117.

    Article  CAS  Google Scholar 

  41. M. Liu, D. Qiu, M.C. Zhao, G. Song, and A. Atrens, The Effect of Crystallographic Orientation on the Active Corrosion of Pure Magnesium, Scr. Mater., 2008, 58(5), p 421–424.

    Article  CAS  Google Scholar 

  42. G.L. Song, R. Mishra, and Z. Xu, Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy, Electrochem. Commun., 2010, 12(8), p 1009–1012.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (Grant No. U2241231) and the Shandong Provincial Natural Science Foundation (Project No. ZR2023ME159).

Author information

Authors and Affiliations

Authors

Contributions

BJL: Methodology, conceptualization, investigation, writing—original draft, funding acquisition. FHG: Investigation. JJL: Methodology, resources, formal analysis, supervision, writing—review and editing. JP: supervision, review and editing.

Corresponding author

Correspondence to Jun-Jiang Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, BJ., Gao, FH., Lv, JJ. et al. Effect of 0.45 wt.% Nd Addition on the Corrosion Resistance of Extruded Mg-6Al-3Sn-2Zn Alloy. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08526-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08526-9

Keywords

Navigation