Skip to main content
Log in

Microstructure Characterization and Wear Behavior of New ZK60 Alloy Reinforced with 5–10% SiC and 5–10% B4C Particles

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the researchers have attempted to reinforce ZK60 alloys with 5% SiC, 10% SiC, 5% B4C, 10% B4C and 5%SiC + 5%B4C microparticles and investigated the dry wear behavior of these composites. The reinforced composites were produced by the stirred casting method under the atmosphere of SF6. The high-temperature oxidation tendency of Mg and B elements can cause the oxidized-unsuccessful product in the stirred casting process. Therefore, the researchers used the semi-solid temperature stirring method in production as a new solution. The reinforced composites were homogenized at 420 °C for 24 hours and extruded at a rate of 2.25. Following the production process, all samples underwent microstructural characterization analyses, hardness tests, compression tests and dry wear tests. Comparative analysis was done between the results of unreinforced ZK60 alloy and composites from compression and wear tests. This study's results reveal a superior enhancement; the addition of 5% SiC increased the compressive strength of ZK60 alloy by 15%, while the addition of 5% B4C increased by 26%. Furthermore, adding the 5%SiC reinforcement reduced the wear rate by 4.3%, and the 5% B4C reinforcement reduced the wear rate by 11.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Vignesh Kumar, G. Padmanaban and V. Balasubramanian, Role of Tool Pin Profiles on Wear Characteristics of Friction Stir Processed Magnesium Alloy ZK60/Silicon Carbide Surface Composites, Materwiss Werksttech., 2020, 51, p 140–152.

    Article  Google Scholar 

  2. D.R. Askeland, The Science and Engineering of Materials, Second SI edition, 2nd ed. Chapman & Hall, London, 1991.

    Book  Google Scholar 

  3. K.U. Kainer and B.L. Mordike Eds., Magnesium Alloys and their Applications, Wiley-Vch, Weinheim, 2000

    Google Scholar 

  4. K.U. Kainer, Metal matrix composites, Custom-made Materials for Automotive and Aerospace Engineering. K.U. Kainer Ed., Wiley, Grünstadt, 2006

    Google Scholar 

  5. E. Ghali, Corrosion Resistance of Aluminum and Magnesium Alloys, Understanding, Performance, and Testing, John Wiley Sons, Inc., New Jersey, 2010.

    Book  Google Scholar 

  6. Handbook CAI, ASM Metals Handbook, Metallography and Microstrustures Handbook, Vol 09, ASM International, 2004.

  7. L.P. Barber LP, Characterization of the Solidification Behavior and Resultant Microstructures of Magnesium-Aluminum Alloys. Spectrum, 2004.

  8. Y.C. Lee, A.K. Dahle and D.H. StJohn, Grain refinement of magnesium, Essential Readings in Magnesium Technology. John Wiley & Sons, Hoboken, 2016, p 247–254

    Chapter  Google Scholar 

  9. M. Tayebi, H. Najafi, S. Nategh et al., Creep Behavior of ZK60 Alloy and ZK60/SiCw Composite After Extrusion and Precipitation Hardening, Met. Mater. Int., 2021, 27, p 3905–3917. https://doi.org/10.1007/s12540-020-00877-5

    Article  CAS  Google Scholar 

  10. J.D. Robson and C. Paa-Rai, The Interaction of Grain Refinement and Ageing in Magnesium-Zinc-Zirconium (ZK) Alloys, Acta Mater., 2015, 95, p 10–19.

    Article  CAS  Google Scholar 

  11. Z.C. Hildebrand, M. Qian, D.H. StJohn et al., Influence of Zinc on the Soluble Zirconium Content in Magnesium and the Subsequent Grain Refinement by Zirconium, Magnes. Technol., 2004, 2004, p 241–245.

    Google Scholar 

  12. M.S. El-Wazery, A.R. El-Desouky, O.A. Hamed et al., Electrical and Mechanical Performance of Zirconia-Nickel Functionally Graded Materials, Int. J. Eng. Trans. A Basics, 2013, 26, p 375–382.

    Google Scholar 

  13. W.H. Hunt and D.R. Herling, Aluminum Metal Matrix Composites, Adv. Mater. Process., 2004, 162, p 39–44.

    CAS  Google Scholar 

  14. S. Seshan, M. Jayamathy, S.V. Kailas et al., The Tensile Behavior of Two Magnesium Alloys Reinforced with Silicon Carbide Particulates, Mater. Sci. Eng. A, 2003, 363, p 345–351.

    Article  Google Scholar 

  15. R.L. Deuis, C. Subramanian and J.M. Yellup, Abrasive Wear of Aluminium Composites—A Review, Wear, 1996, 201, p 132–144.

    Article  CAS  Google Scholar 

  16. K. Rahmani and G.H. Majzoobi, The effect of particle size on microstructure, relative density and indentation load of Mg-B4C composites fabricated at different loading rates, J. Compos. Mater., 2020, 54, p 2297–2311.

    Article  CAS  Google Scholar 

  17. N.P. Bansal, Handbook of Ceramic Composites, Kluwer academic publishers, NewYork, 2005.

    Book  Google Scholar 

  18. A. Sager, I. Esen, H. Ahlatçi et al., Characterization and Corrosion Behavior of Composites Reinforced with ZK60, AlN, and SiC Particles, Eng. Sci. Technol. Int. J., 2023, 41, p 101389. https://doi.org/10.1016/j.jestch.2023.101389

    Article  Google Scholar 

  19. A. Sager, I. Esen, H. Ahlatçi et al., Dry Wear Behaviour of the New ZK60/AlN/SiC Particle Reinforced Composites, Materials, 2022, 15, p 8582.

    Article  CAS  Google Scholar 

  20. A.M. Sadoun, M.M. Mohammed, E.M. Elsayed et al., Effect of Nano Al2O3 Coated Ag Addition on the Corrosion Resistance and Electrochemical Behavior of Cu-Al2O3 Nanocomposites, J. Mater. Res. Technol., 2020, 9, p 4485–4493. https://doi.org/10.1016/j.jmrt.2020.02.076

    Article  CAS  Google Scholar 

  21. M. Gu, Z. Wu, Y. Jin et al., Interfacial Reaction and Microstructure in a ZK60-Based Hybrid Composite, J. Mater. Sci., 2000, 35, p 2499–2505.

    Article  CAS  Google Scholar 

  22. H. Dieringa and K.U. Kainer, Particles, fibers and short fibers for the reinforcement of metal materials, Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering. Wley, Weinheim, 2006, p 55–76

    Chapter  Google Scholar 

  23. A.F. Meselhy and M.M. Reda, Investigation of Mechanical Properties of Nanostructured Al-SiC Composite Manufactured by Accumulative Roll Bonding, J. Compos. Mater., 2019, 53, p 3951–3961.

    Article  CAS  Google Scholar 

  24. B.S. Murty, S.K. Thakur and B.K. Dhindaw, On the Infiltration Behavior of Al, Al-Li, and Mg Melts Through SiCp Bed, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2000, 31, p 319–325.

    Article  Google Scholar 

  25. A. Matin, F.F. Saniee and H.R. Abedi, Microstructure and Mechanical Properties of Mg/SiC and AZ80/SiC Nano-Composites Fabricated Through Stir Casting Method, Mater. Sci. Eng. A, 2015, 625, p 81–88. https://doi.org/10.1016/j.msea.2014.11.050

    Article  CAS  Google Scholar 

  26. M. Elwan, A. Fathy, A. Wagih et al., Fabrication and Investigation on the Properties of Ilmenite (FeTiO3)-based Al Composite by Accumulative Roll Bonding, J. Compos. Mater., 2020, 54, p 1259–1271.

    Article  CAS  Google Scholar 

  27. A. Singh and N. Bala, Fabrication and Tribological Behavior of Stir Cast Mg/B4C Metal Matrix Composites, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, 48, p 5031–5045.

    Article  CAS  Google Scholar 

  28. K. Rahmani, G.H. Majzoobi, G. Ebrahim-Zadeh et al., Comprehensive Study on Quasi-Static and Dynamic Mechanical Properties and Wear Behavior of Mg—B4C Composite Compacted at Several Loading Rates Through Powder Metallurgy, Trans. Nonferrous Met. Soc. China, 2021, 31, p 371–381. https://doi.org/10.1016/S1003-6326(21)65502-4

    Article  CAS  Google Scholar 

  29. H. Ahmadian, A.M. Sadoun, A. Fathy et al., Utilizing a Unified Conceptual Dynamic Model for Prediction of Particle Size of Duel-Matrix Nanocomposites During Mechanical Alloying, Powder Technol., 2023, 418, p 118291. https://doi.org/10.1016/j.powtec.2023.118291

    Article  CAS  Google Scholar 

  30. T. Zhu, Y. Yu, Y. Shen et al., Wear Behavior of Extruded ZK60 Magnesium Alloy in Simulated Body Fluid with Different pH Values, Mater Chem Phys., 2021, 262, p 124292.

    Article  CAS  Google Scholar 

  31. Y. Behnamian, D. Serate, E. Aghaie et al., Tribological Behavior of ZK60 Magnesium Matrix Composite Reinforced by Hybrid MWCNTs/B4C Prepared by Stir Casting Method, Tribol. Int., 2022, 165, p 107299. https://doi.org/10.1016/j.triboint.2021.107299

    Article  CAS  Google Scholar 

  32. Y. Guo, S. Wang, W. Liu et al., Effect of Laser Shock Peening on Tribological Properties of Magnesium Alloy ZK60, Tribol Int., 2020, 144, p 106138. https://doi.org/10.1016/j.triboint.2019.106138

    Article  CAS  Google Scholar 

  33. J. Liang, Z. Lei, Y. Chen et al., Microstructure Evolution of Laser Powder Bed Fusion ZK60 Mg Alloy After Different Heat Treatment, J. Alloys Compd., 2022, 898, p 163046. https://doi.org/10.1016/j.jallcom.2021.163046

    Article  CAS  Google Scholar 

  34. L.L. Chang, X.J. Su, J.L. Qin et al., Uneven Microstructure in ZK60 Alloy as a Core of AZ31/ZK60 Composite Rods, Mater. Lett., 2022, 325, p 132666.

    Article  CAS  Google Scholar 

  35. A.H. Wang and T.M. Yue, YAG Laser Cladding of an Al-Si Alloy onto an Mg/SiC Composite for the Improvement of Corrosion Resistance, Compos. Sci. Technol., 2001, 61, p 1549–1554.

    Article  CAS  Google Scholar 

  36. I. Kerti and F. Toptan, Microstructural Variations in Cast B4C-Reinforced Aluminium Matrix Composites (AMCs), Mater. Lett., 2008, 62, p 1215–1218.

    Article  CAS  Google Scholar 

  37. Q.C. Jiang, H.Y. Wang, B.X. Ma et al., Fabrication of B4C Participate Reinforced Magnesium Matrix Composite by Powder Metallurgy, J. Alloys Compd., 2005, 386, p 177–181.

    Article  CAS  Google Scholar 

  38. S.M. He, L.M. Peng, X.Q. Zeng et al., Comparison of the Microstructure and Mechanical Properties of a ZK60 Alloy with and Without 1.3 wt.% Gadolinium Addition, Mater. Sci. Eng. A., 2006, 433, p 175–181.

    Article  Google Scholar 

  39. S. Cai, T. Lei, N. Li et al., Effects of Zn on Microstructure, Mechanical Properties and Corrosion Behavior of Mg-Zn Alloys, Mater. Sci. Eng. C, 2012, 32, p 2570–2577. https://doi.org/10.1016/j.msec.2012.07.042

    Article  CAS  Google Scholar 

  40. A. Roine, Outokumpu HSC Chemistry for Windows: Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. User’s Guid Outokumpu HSC Chem ® Wind [Internet]. 2002;268. Available from: http://www.chemistry-software.com/pdf/HSC/fullmanualHSCChemistry5.pdf.

  41. A. Mohamed, M.M. Mohammed, A.F. Ibrahim et al., Effect of Nano Al2O3 Coated Ag Reinforced Cu Matrix Nanocomposites on Mechanical and Tribological Behavior Synthesis by P/M Technique, J. Compos. Mater., 2020, 54, p 4921–4928.

    Article  CAS  Google Scholar 

  42. I.R. Najjar, A.M. Sadoun, A. Fathy et al., Prediction of Tribological Properties of Alumina-Coated, Silver-Reinforced Copper Nanocomposites Using Long Short-Term Model Combined with Golden Jackal Optimization, Lubricants, 2022, 10, p 277.

    Article  CAS  Google Scholar 

  43. A.M. Sadoun, I.M.R. Najjar, A. Fathy et al., An Enhanced Dendritic Neural Algorithm to Predict the Wear Behavior of Alumina Coated Silver Reinforced Copper Nanocomposites, Alex. Eng J., 2023, 65, p 809–823. https://doi.org/10.1016/j.aej.2022.09.036

    Article  Google Scholar 

  44. A.M. Sadoun, I.R. Najjar, G.S. Alsoruji et al., Utilization of Improved Machine Learning Method Based on Artificial Hummingbird Algorithm to Predict the Tribological Behavior of Cu-Al2O3 Nanocomposites Synthesized by In Situ Method, Mathematics, 2022, 10, p 1266.

    Article  Google Scholar 

Download references

Acknowledgment

This study has been supported by The Scientific and Technological Research Council of Turkey under the Project no. 122M233, and the authors thank for the valuable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Esen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boztas, H., Esen, I., Ahlatci, H. et al. Microstructure Characterization and Wear Behavior of New ZK60 Alloy Reinforced with 5–10% SiC and 5–10% B4C Particles. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08469-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08469-1

Keywords

Navigation