Skip to main content
Log in

Precipitation Behavior, Recrystallization Behavior, and Mechanical Properties of Highly Alloyed Al-Zn-Mg-Cu Alloy with Respect to Zn/Mg Ratio

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the precipitation behavior and recrystallization behavior of highly alloyed Al-Zn-Mg-Cu alloy with different Zn/Mg ratio were investigated using optical microscope, scanning electron microscope, X-ray diffraction, transmission electron microscope and tensile test. The results indicated that the primary phase increases with Zn/Mg ratio dropping, which increases the nucleation particles and refines the grains. The real solidification path is between Lever law and Scheil model, which is closer to Scheil model. The precipitates are η′ when Zn/Mg ≥ 4.19 in T6 temper. However, it is the co-precipitation of η' and T' when Zn/Mg < 4.19 and the fraction of η' decreases from 100 to 7.6% as Zn/Mg ratio decrease from 4.19 to 1.91. In addition, the impact of residual eutectic phase in a low Zn/Mg ratio alloy on recrystallization behavior and mechanical properties was discussed. Grain boundary primary phases in low Zn/Mg alloys are difficult to completely dissolve during the solid solution. Interestingly, the particle stimulated nucleation occurs preferentially around the second phase and gradually extends to the center of the grain, and there are still low angle grain boundaries in the center of larger original grain. When Zn/Mg > 1.91, the tensile strength increases with Zn/Mg ratio dropping. After Zn/Mg ≤ 1.91, the tensile strength decreases slightly due to the residual second phase.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data presented in this article will be available from the corresponding author at a reasonable request.

References

  1. S. Chen, J. Li, G.Y. Hu, K. Chen, and L. Huang, Effect of Zn/Mg ratios on SCC, Electrochemical Corrosion Properties and Microstructure of Al-Zn-Mg alloy, J. Alloys Compd., 2018, 757, p 259–264. https://doi.org/10.1016/j.jallcom.2018.05.063

    Article  CAS  Google Scholar 

  2. G. Graf, P. Spoerk-Erdely, P. Staron, A. Stark, F. Mendez Martin, H. Clemens, and T. Klein, Quench Rate Sensitivity of Age-Hardenable Al-Zn-Mg-Cu Alloys with Respect to the Zn/Mg ratio: An In Situ SAXS and HEXRD Study, Acta Mater., 2022, 227, p 117727. https://doi.org/10.1016/j.actamat.2022.117727

    Article  CAS  Google Scholar 

  3. A. Azarniya, A.K. Taheri, and K.K. Taheri, Recent Advances in Ageing of 7xxx Series Aluminum Alloys: A Physical Metallurgy Perspective, J. Alloys Compd., 2019, 781, p 945–983. https://doi.org/10.1016/j.jallcom.2018.11.286

    Article  CAS  Google Scholar 

  4. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  5. J. Dong, J.Z. Cui, F.X. Yu, Z.H. Zhao, and Y.B. Zhuo, A New Way to Cast High-Alloyed Al-Zn-Mg-Cu-Zr for Super-High Strength and Toughness, J. Mater. Process. Technol., 2006, 171, p 399–404. https://doi.org/10.1016/j.jmatprotec.2005.07.010

    Article  CAS  Google Scholar 

  6. P. Zhang, Y. Li, Y. Liu, Y. Zhang, and J. Liu, Analysis of the Microhardness, Mechanical Properties and Electrical Conductivity of 7055 Aluminum Alloy, Vacuum, 2020, 171, p 109005. https://doi.org/10.1016/j.vacuum.2019.109005

    Article  CAS  Google Scholar 

  7. E.A. Starke and J.T. Staley, Application of Modern Aluminum Alloys to Aircraft, Prog. Aerosp. Sci., 1996, 32, p 131–172. https://doi.org/10.1016/0376-0421(95)00004-6

    Article  Google Scholar 

  8. Y. Chen, Y. Yang, Z. Feng, B. Huang, and X. Luo, Surface Gradient Nanostructures in High Speed Machined 7055 Aluminum Alloy, J. Alloys Compd., 2017, 726, p 367–377. https://doi.org/10.1016/j.jallcom.2017.08.018

    Article  CAS  Google Scholar 

  9. H. She, D. Shu, J. Wang, and B.D. Sun, Influence of Multi-Microstructural Alterations on Tensile Property Inhomogeneity of 7055 Aluminum Alloy Medium Thick Plate, Mater. Charact., 2016, 113, p 189–197. https://doi.org/10.1016/j.matchar.2016.01.020

    Article  CAS  Google Scholar 

  10. Q. Wang, Y. Zhao, K. Yan, and S. Lu, Corrosion Behavior of Spray Formed 7055 Aluminum Alloy Joint Welded by Underwater Friction stir Welding, Mater. Des., 2015, 68, p 97–103. https://doi.org/10.1016/j.matdes.2014.12.019

    Article  CAS  Google Scholar 

  11. Z. Chen, Y. Mo, and Z. Nie, Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys, Metall Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44, p 3910–3920. https://doi.org/10.1007/s11661-013-1731-x

    Article  CAS  Google Scholar 

  12. W.X. Shu, L.G. Hou, C. Zhang, F. Zhang, J.C. Liu, J.T. Liu, L.Z. Zhuang, and J.S. Zhang, Tailored Mg and Cu Contents Affecting the Microstructures and Mechanical Properties of High-Strength Al-Zn-Mg-Cu Alloys, Mater. Sci. Eng. A., 2016, 657, p 269–283. https://doi.org/10.1016/j.msea.2016.01.039

    Article  CAS  Google Scholar 

  13. T.F. Chung, M. Kawasaki, P. Wang, K. Nishio, M. Shiojiri, W.C. Li, C.N. Hsiao, and J.R. Yang, Atomic-Resolution Energy Dispersive X-ray Spectroscopy Mapping of η Precipitates in an Al-Mg-Zn-Cu Alloy, Mater. Charact., 2020, 166, p 110448. https://doi.org/10.1016/j.matchar.2020.110448

    Article  CAS  Google Scholar 

  14. T.F. Chung, Y.L. Yang, M. Shiojiri, C.N. Hsiao, W.C. Li, C.S. Tsao, Z. Shi, J. Lin, and J.R. Yang, An Atomic Scale Structural Investigation of Nanometre-Sized η Precipitates in the 7050 Aluminium Alloy, Acta Mater., 2019, 174, p 351–368. https://doi.org/10.1016/j.actamat.2019.05.041

    Article  CAS  Google Scholar 

  15. B. Chen, Precipitation in an Al-Zn-Mg-Cu Alloy During Isothermal Aging: Atomic-Scale HAADF-STEM Investigation, Mater. Sci. Eng. A., 2017, 691, p 60–70. https://doi.org/10.1016/j.msea.2017.03.032

    Article  CAS  Google Scholar 

  16. G. Sha and A. Cerezo, Early-Stage Precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Mater., 2004, 52, p 4503–4516. https://doi.org/10.1016/j.actamat.2004.06.025

    Article  CAS  Google Scholar 

  17. K. Wen, Y. Fan, G. Wang, L. Jin, X. Li, Z. Li, Y. Zhang, and B. Xiong, Aging Behavior and Precipitate Characterization of a high Zn-Containing Al-Zn-Mg-Cu Alloy with Various Tempers, Mater. Des., 2016, 101, p 16–23. https://doi.org/10.1016/j.matdes.2016.03.150

    Article  CAS  Google Scholar 

  18. Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, M. Guo, and L. Cao, Investigation on Microstructure and Mechanical Properties of Al-Zn-Mg-Cu Alloys with Various Zn/Mg ratios, J. Mater. Sci. Technol., 2021, 85, p 106–117. https://doi.org/10.1016/j.jmst.2020.12.045

    Article  CAS  Google Scholar 

  19. Y. Wang, X. Wu, L. Cao, X. Tong, Y. Zou, Q. Zhu, S. Tang, H. Song, and M. Guo, Effect of Ag on Aging Precipitation Behavior and Mechanical Properties of Aluminum Alloy 7075, Mater. Sci. Eng. A., 2021, 804, p 140515. https://doi.org/10.1016/j.msea.2020.140515

    Article  CAS  Google Scholar 

  20. S. Hou, P. Liu, D. Zhang, J. Zhang, and L. Zhuang, Precipitation Hardening Behavior and Microstructure Evolution of Al–5.1 Mg–0.15Cu Alloy with 3.0Zn (wt%) Addition, J. Mater. Sci., 2018, 53, p 3846–3861. https://doi.org/10.1007/s10853-017-1811-1

    Article  CAS  Google Scholar 

  21. P. Zhao, X. Wu, K. Gao, S. Wen, L. Rong, H. Huang, W. Wei, and Z. Nie, Effect of Zn/Mg Ratio on Microstructure and Mechanical Properties of Al-Zn-Mg Alloys, Mater. Lett., 2022, 312, p 131676. https://doi.org/10.1016/j.matlet.2022.131676

    Article  CAS  Google Scholar 

  22. Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, and L. Cao, Co-Precipitation of T′ and η′ Phase in Al-Zn-Mg-Cu Alloys, Mater. Charact., 2020, 169, p 110610. https://doi.org/10.1016/j.matchar.2020.110610

    Article  CAS  Google Scholar 

  23. H.P. Tang, Q.D. Wang, C. Luo, C. Lei, T.W. Liu, Z.Y. Li, H.Y. Jiang, W.J. Ding, J. Fang, and J.W. Zhang, Effects of Aging Treatment on the Precipitation Behaviors and Mechanical Properties of Al-5.0Mg-3.0Zn-1.0Cu Cast Alloys, J. Alloys Compd., 2020, 842, p 155707. https://doi.org/10.1016/j.jallcom.2020.155707

    Article  CAS  Google Scholar 

  24. C. Cao, D. Zhang, L. Zhuang, and J. Zhang, Improved Age-Hardening Response and Altered Precipitation Behavior of Al-5.2Mg-0.45Cu-2.0Zn (wt%) Alloy with Pre-Aging Treatment, J. Alloys Compd., 2017, 691, p 40–43. https://doi.org/10.1016/j.jallcom.2016.08.206

    Article  CAS  Google Scholar 

  25. S. Hou, D. Zhang, Q. Ding, J. Zhang, and L. Zhuang, Solute Clustering and Precipitation of Al-5.1Mg-0.15Cu-xZn Alloy, Mater. Sci. Eng. A., 2019, 759, p 465–478. https://doi.org/10.1016/j.msea.2019.05.066

    Article  CAS  Google Scholar 

  26. X.B. Yang, J.H. Chen, J.Z. Liu, F. Qin, J. Xie, and C.L. Wu, A High-Strength AlZnMg Alloy Hardened by the T-Phase Precipitates, J. Alloys Compd., 2014, 610, p 69–73. https://doi.org/10.1016/j.jallcom.2014.04.185

    Article  CAS  Google Scholar 

  27. N. Takata, M. Ishihara, A. Suzuki, and M. Kobashi, Microstructure and Strength of a Novel Heat-Resistant Aluminum Alloy Strengthened by T-Al6Mg11Zn11 Phase at Elevated Temperatures, Mater. Sci. Eng. A., 2019, 739, p 62–70. https://doi.org/10.1016/j.msea.2018.10.034

    Article  CAS  Google Scholar 

  28. C. Mondal and A.K. Mukhopadhyay, On the Nature of T(Al2Mg3Zn3) and S(Al2CuMg) Phases Present in As-Cast and Annealed 7055 Aluminum Alloy, Mater. Sci. Eng. A., 2005, 391, p 367–376. https://doi.org/10.1016/j.msea.2004.09.013

    Article  CAS  Google Scholar 

  29. Y. Zhao, H. Li, Y. Liu, and Y. Huang, The Microstructures and Mechanical Properties of a Highly Alloyed Al-Zn-Mg-Cu Alloy: The Role of Cu Concentration, J. Mater. Res. Technol., 2022, 18, p 122–137. https://doi.org/10.1016/j.jmrt.2022.02.071

    Article  CAS  Google Scholar 

  30. Y. Liu, D. Jiang, W. Xie, J. Hu, and B. Ma, Solidification Phases and their Evolution During Homogenization of a DC Cast Al-8.35Zn-2.5Mg-2.25Cu Alloy, Mater. Charact., 2014, 93, p 173–183. https://doi.org/10.1016/j.matchar.2014.04.004

    Article  CAS  Google Scholar 

  31. Y.G. Liao, X.Q. Han, M.X. Zeng, and M. Jin, Influence of Cu on Microstructure and Tensile Properties of 7XXX Series Aluminum Alloy, Mater. Des., 2015, 66, p 581–586. https://doi.org/10.1016/j.matdes.2014.05.003

    Article  CAS  Google Scholar 

  32. Y. Ii, P. Li, G. Zhao, X. Liu, and J. Cui, The Constituents in Al-10Zn-2.5Mg-2.5Cu Aluminum Alloy, Mater. Sci. Eng. A., 2005, 397, p 204–208. https://doi.org/10.1016/j.msea.2005.02.013

    Article  CAS  Google Scholar 

  33. R. Poganitsch, L. Sigl, F. Jeglitsch, and F. Kutner, Intermetallic Compounds in High Strength Al-Zn-Mg-Cu Alloys, Alum. Dusseld., 1981, 57, p 804–807.

    CAS  Google Scholar 

  34. W.X. Shu, L.G. Hou, J.C. Liu, C. Zhang, F. Zhang, J.T. Liu, L.Z. Zhuang, and J.S. Zhang, Solidification Paths and Phase Components at High Temperatures of High-Zn Al-Zn-Mg-Cu Alloys with Different Mg and Cu Contents, Metall Mater. Trans. A Phys. Metall. Mater. Sci., 2015, 46, p 5375–5392. https://doi.org/10.1007/s11661-015-3050-x

    Article  CAS  Google Scholar 

  35. W. Yang, S. Ji, M. Wang, and Z. Li, Precipitation Behaviour of Al-Zn-Mg-Cu Alloy and Diffraction Analysis from η′Precipitates in Four Variants, J. Alloys Compd., 2014, 610, p 623–629. https://doi.org/10.1016/j.jallcom.2014.05.061

    Article  CAS  Google Scholar 

  36. J.Z. Liu, J.H. Chen, D.W. Yuan, C.L. Wu, J. Zhu, and Z.Y. Cheng, Fine Precipitation Scenarios of AlZnMg(Cu) Alloys Revealed by Advanced Atomic-Resolution Electron Microscopy Study Part I: Structure Determination of the Precipitates in AlZnMg(Cu) Alloys, Mater. Charact., 2015, 99, p 277–286. https://doi.org/10.1016/j.matchar.2014.11.028

    Article  CAS  Google Scholar 

  37. M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, and A. Deschamps, Characterisation of the Composition and Volume Fraction of η′ and η Precipitates in an Al-Zn-Mg Alloy by a Combination of Atom Probe, Small-Angle X-ray Scattering and Transmission Electron Microscopy, Acta Mater., 2005, 53, p 2881–2892. https://doi.org/10.1016/j.actamat.2005.03.004

    Article  CAS  Google Scholar 

  38. A. Bigot, P. Auger, S. Chambreland, D. Blavette, and A. Reeves, Atomic Scale Imaging and Analysis of T′ Precipitates in Al-Mg-Zn Alloys, Microsc. Microanal. Microstruct., 1997, 8, p 103–113. https://doi.org/10.1051/mmm:1997109

    Article  CAS  Google Scholar 

  39. R. Ghiaasiaan, B.S. Amirkhiz, and S. Shankar, Quantitative Metallography of Precipitating and Secondary Phases After Strengthening Treatment of Net Shaped Casting of Al-Zn-Mg-Cu (7000) Alloys, Mater. Sci. Eng. A., 2017, 698, p 206–217. https://doi.org/10.1016/j.msea.2017.05.047

    Article  CAS  Google Scholar 

  40. L.K. Berg, J. Gjoønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg, GP-Zones in Al-Zn-Mg Alloys and their Role in Artificial Aging, Acta Mater., 2001, 49, p 3443–3451. https://doi.org/10.1016/S1359-6454(01)00251-8

    Article  CAS  Google Scholar 

  41. N. Afify, A.-F. Gaber, and G. Abbady, Fine Scale Precipitates in Al-Mg-Zn Alloys after Various Aging Temperatures, Mater. Sci. Appl., 2011, 02, p 427–434. https://doi.org/10.4236/msa.2011.25056

    Article  CAS  Google Scholar 

  42. F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, and T. Hu, Experimental and DFT Characterization of η′ Nano-Phase and its Interfaces in Al-Zn-Mg-Cu Alloys, Acta Mater., 2019, 164, p 207–219. https://doi.org/10.1016/j.actamat.2018.10.045

    Article  CAS  Google Scholar 

  43. E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B., 1951, 64, p 747–753. https://doi.org/10.1088/0370-1301/64/9/303

    Article  Google Scholar 

  44. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28.

    CAS  Google Scholar 

  45. H.R. Shercliff and M.F. Ashby, A Process Model for Age Hardening of Aluminium Alloys—I. The Model, Acta Metall. Mater., 1990, 38, p 1789–1802. https://doi.org/10.1016/0956-7151(90)90291-N

    Article  CAS  Google Scholar 

  46. Y. Liu, D. Jiang, B. Li, W. Yang, and J. Hu, Effect of Cooling Aging on Microstructure and Mechanical Properties of an Al-Zn-Mg-Cu Alloy, Mater. Des., 2014, 57, p 79–86. https://doi.org/10.1016/j.matdes.2013.12.024

    Article  CAS  Google Scholar 

  47. Z. Wang, Q. Pu, Y. Li, P. Xia, J. Geng, X. Li, M. Wang, D. Chen, and H. Wang, Microstructures and Mechanical Properties of Al-Zn-Mg-Cu Alloy with the Combined Addition of Ti and Zr, J. Mater. Res. Technol., 2023, 22, p 747–761. https://doi.org/10.1016/j.jmrt.2022.11.106

    Article  CAS  Google Scholar 

  48. H. She, D. Shu, A. Dong, J. Wang, B. Sun, and H. Lai, Relationship of Particle Stimulated Nucleation, Recrystallization and Mechanical Properties Responding to Fe and Si Contents in Hot-Extruded 7055 Aluminum Alloys, J. Mater. Sci. Technol., 2019, 35, p 2570–2581. https://doi.org/10.1016/j.jmst.2019.07.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (No. U1837207) and Natural Foundation of Hunan Province (No. 2022JJ40608).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Liu or Yuanchun Huang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, H., Liu, Y. et al. Precipitation Behavior, Recrystallization Behavior, and Mechanical Properties of Highly Alloyed Al-Zn-Mg-Cu Alloy with Respect to Zn/Mg Ratio. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08341-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08341-2

Keywords

Navigation