Skip to main content
Log in

Influence of Samarium Oxide Addition on Magnesium Aluminate Spinel: A Case of Reaction Sintering

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the role of samarium oxide (Sm2O3) as an additive on the property development of stoichiometric (molar ratio MgO: Al2O3 = 1:1) magnesium aluminate spinel using different raw material sources was investigated. Initially, a total of 6 spinel batches were prepared with the help of commercially available sources of alumina (three different grades) and magnesia (two different grades) and then, the effect of Sm2O3 addition (1-4% by weight) on the properties of different spinel compositions was studied in the temperature range of 1550-1650 °C. The various spinel batches, both additive-free and Sm2O3 doped, were then characterized via densification, phase formation, microstructural studies, cold strength and retainment of strength post thermal shock. The results revealed that 1% of Sm2O3 addition led to optimum densification of all the spinel batches. This was due to the formation of samarium aluminate-SmAlO3 formed as a result of reaction between Sm2O3 and components of spinel providing hindrance to the migration of grain-boundaries of spinel. An improvement in the cold-strength and retained strength post-thermal shock treatment in the Sm2O3-doped spinel compositions was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Ganesh, A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications, Int. Mater. Rev., 2013, 58(2), p 63–112.

    Article  CAS  Google Scholar 

  2. R. Sarkar, Refractory Applications of Magnesium Aluminate Spinel, Refract. Manual-Interceram, 2010, p 11–14.

  3. X. Ren, B. Ma, G. Zhang, G. Fu, J. Yu, and G. Liu, Preparation and Properties of MgAl2O4 Spinel Ceramics by Double-Doped Sm2O3– (Y2O3, Nb2O5 and La2O3), Mater. Chem. Phys., 2020, 252, p 123309.

    Article  CAS  Google Scholar 

  4. K.E. Sickafus, J.M. Wills, and N.W. Grimes, Structure of Spinel, J. Amer. Ceram. Soc., 1999, 82(12), p 3279–3292.

    Article  CAS  Google Scholar 

  5. L. Esposito, A. Piancastelli, and S. Martelli, Production and Characterization of Transparent MgAl2O4 Prepared by Hot Pressing, J. Eur. Ceram. Soc., 2013, 33(4), p 737–747.

    Article  CAS  Google Scholar 

  6. K. Morita, B.N. Kim, H. Yoshida, and K. Hiraga, Densification Behavior of a fine-Grained MgAl2O4 Spinel during Spark Plasma Sintering (SPS), Scr. Mater., 2010, 63(6), p 565–568.

    Article  CAS  Google Scholar 

  7. M. Sokol, M. Halabi, S. Kalabukhov, and N. Frage, Nano-Structured MgAl2O4 Spinel Consolidated by High Pressure Spark Plasma Sintering (HPSPS), J. Eur. Ceram. Soc., 2017, 37(2), p 755–762.

    Article  CAS  Google Scholar 

  8. Y. Wen, X. Liu, X. Chen, Q. Jia, R. Yu, and T. Ma, Effect of Heat Treatment Conditions on the Growth of MgAl2O4 Nanoparticles Obtained by Sol-Gel Method, Ceram. Int., 2017, 43(17), p 15246–15253.

    Article  CAS  Google Scholar 

  9. D. Ding, L. Lv, G. Xiao, Y. Ren, S. Yang, P. Yang, and X. Hou, One-Step Synthesis of In-Situ Multilayer Graphene Containing MgAl2O4 Spinel Composite Powders, Ceram. Int., 2019, 45(5), p 6209–6215.

    Article  CAS  Google Scholar 

  10. K. Mackenzie, J. Temuujin, T. Jadambaa, M. Smith, and P. Angerer, Mechanochemical Synthesis and Sintering Behaviour of Magnesium Aluminate Spinel, J. Mater. Sci., 2000, 35(22), p 5529–5535.

    Article  CAS  Google Scholar 

  11. S. Takahashi, A. Kan, and H. Ogawa, Microwave Dielectric Properties and Crystal Structures of Spinel-Structured MgAl2O4 Ceramics Synthesized by a Molten-Salt Method, J. Eur. Ceram. Soc., 2017, 37(3), p 1001–1006.

    Article  CAS  Google Scholar 

  12. A. Zegadi, M. Kolli, M. Hamidouche, and G. Fantozzi, Transparent MgAl2O4 Spinel Fabricated by Spark Plasma Sintering from Commercial Powders, Ceram. Int., 2018, 44(15), p 18828–18835.

    Article  CAS  Google Scholar 

  13. L.L. Zhu, Y.J. Park, L. Gan, S.I. Go, H.N. Kim, J.M. Kim, and J.W. Ko, Fabrication of Transparent MgAl2O4 from Commercial Nanopowders by Hot-Pressing Without Sintering Additive, Mater. Lett., 2018, 219, p 8–11.

    Article  CAS  Google Scholar 

  14. M.T. Camargo, Q. Jacques, L.B. Caliman, J. Miagava, D. Hotza, R.H. Castro, and D. Gouvêa, Synthesis of Ca-Doped Spinel by Ultrasonic Spray Pyrolysis, Mater. Lett., 2016, 171, p 232–235.

    Article  CAS  Google Scholar 

  15. L. Yuan, B. Ma, Q. Zhu, Z. Wang, G. Li, and J. Yu, Preparation and Properties of MgAl2O4 Based Ceramics Reinforced With Rod-Like Microcrystallines by Co-Doping Sm2O3 and La2O3, Ceram. Int., 2017, 43(18), p 16258–16263.

    Article  CAS  Google Scholar 

  16. R. Sarkar and S. Sahoo, Effect of Raw Materials on Formation and Densification of Magnesium Aluminate Spinel, Ceram. Int., 2014, 40(10), p 16719–16725.

    Article  CAS  Google Scholar 

  17. S. Sinhamahapatra, C. Ghosh, H.S. Tripathi, and S. Mukhopadhyay, Effect of Yb2O3 and TiO2 on Reaction Sintering and Properties of Magnesium Aluminate Spinel, Ceram. Int., 2021, 47(19), p 27372–27385.

    Article  CAS  Google Scholar 

  18. S.K. Mohan and R. Sarkar, A Comparative Study on the Effect of Different Additives on the Formation and Densification of Magnesium Aluminate Spinel, Ceram. Int., 2016, 42(12), p 13932–13943.

    Article  CAS  Google Scholar 

  19. I. Ganesh, S.M. Olhero, A.H. Rebelo, and J.M. Ferreira, Formation and Densification Behavior of MgAl2O4 Spinel: The Influence of Processing Parameters, J. Amer. Ceram. Soc., 2008, 91(6), p 1905–1911.

    Article  CAS  Google Scholar 

  20. R. Sarkar, S.K. Das, and G. Banerjee, Effect of Attritor Milling on the Densification of Magnesium Aluminate Spinel, Ceram. Int., 1999, 25(5), p 485–489.

    Article  CAS  Google Scholar 

  21. R. Sarkar and G. Banerjee, Effect of Compositional Variation and Fineness on the Densification of MgO–Al2O3 Compacts, J. Eur. Ceram. Soc., 1999, 19(16), p 2893–2899.

    Article  CAS  Google Scholar 

  22. C.J. Ting and H.Y. Lu, Defect Reactions and the Controlling Mechanism in the Sintering of Magnesium Aluminate Spinel, J. Amer. Ceram. Soc., 1999, 82(4), p 841–848.

    Article  CAS  Google Scholar 

  23. P. Ugur and C. Aksel, The Effect of SnO2 on the Improvement of Mechanical Properties of MgO–MgAl2O4 Composites, Compos. B Eng., 2012, 43(5), p 2217–2221.

    Article  CAS  Google Scholar 

  24. R. Naghizadeh, H. Rezaie, and F. Golestani-Fard, Effect of TiO2 on Phase Evolution and Microstructure of MgAl2O4 Spinel in Different Atmospheres, Ceram. Int., 2011, 37(1), p 349–354.

    Article  CAS  Google Scholar 

  25. R. Sarkar and G. Bannerjee, Effect of Addition of TiO2 on Reaction Sintered MgO–Al2O3 Spinels, J. Eur. Ceram. Soc., 2000, 20(12), p 2133–2141.

    Article  CAS  Google Scholar 

  26. S. Sinhamahapatra, K. Dana, A. Ghosh, V.P. Reddy, and H.S. Tripathi, Dynamic Thermal Study to Rationalise the Role of Titania in Reaction Sintering of Magnesia-Alumina System, Ceram. Int., 2015, 41(1), p 1073–1078.

    Article  CAS  Google Scholar 

  27. S. Sinhamahapatra, K. Dana, and H.S. Tripathi, Enhancement of Reaction-Sintering of Alumina-Excess Magnesium Aluminate Spinel in Presence of Titania, Ceram. Int., 2018, 44(9), p 10773–10780.

    Article  CAS  Google Scholar 

  28. R. Sarkar, S.K. Das, and G. Banerjee, Effect of Addition of Cr2O3 on the Properties of Reaction Sintered MgO–Al2O3 Spinels, J. Eur. Ceram. Soc., 2002, 22(8), p 1243–1250.

    Article  CAS  Google Scholar 

  29. A. Ghosh, S. Das, J. Biswas, H.S. Tripathi, and G. Banerjee, The Effect of ZnO Addition on the Densification and Properties of Magnesium Aluminate Spinel, Ceram. Int., 2000, 26(6), p 605–608.

    Article  CAS  Google Scholar 

  30. E. Kostić, S. Bošković, and Š Kiš, Influence of Fluorine Ion on the Spinel Synthesis, J. Mater. Sci. Lett., 1982, 1(12), p 507–510.

    Article  Google Scholar 

  31. J.L. Huang, S.Y. Sun, and Y.C. Ko, Investigation of High-Alumina Spinel: Effect of LiF and CaCO3 Addition, J. Amer. Ceram. Soc., 1997, 80(12), p 3237–3241.

    Article  CAS  Google Scholar 

  32. S.K. Chen, M.Y. Cheng, and S.J. Lin, Reducing the Sintering Temperature for MgO–Al2O3 Mixtures by Addition of Cryolite (Na3AlF6), J. Amer. Ceram. Soc., 2002, 85(3), p 540–544.

    Article  CAS  Google Scholar 

  33. R. Lodha, A. Ghosh, B. Mukherjee, and G. N. Agrawal, Zirconia-magnesium aluminate spinel composite-Improved ZrO2-MgAl2O4 composite was prepared by solid-state sintering, Amer. Ceram. Soc. Bull., 2006, 85(6)

  34. I. Ganesh, S. Bhattacharjee, B.P. Saha, R. Johnson, and Y.R. Mahajan, A New Sintering aid for Magnesium Aluminate Spinel, Ceram. Int., 2001, 27(7), p 773–779.

    Article  CAS  Google Scholar 

  35. S.K. Mohan and R. Sarkar, Effect of ZrO2 Addition on MgAl2O4 Spinel from Commercial Grade Oxide Reactants, Ceram. Int., 2016, 42(8), p 10355–10365.

    Article  CAS  Google Scholar 

  36. S.K. Mohan and R. Sarkar, Reaction Sintered Zinc Oxide Incorporated Magnesium Aluminate Spinel from Commercial Grade Oxide Reactants, J. Aust. Ceram. Soc., 2017, 53(1), p 207–216.

    Article  CAS  Google Scholar 

  37. R. Sarkar, S.K. Das, and G. Banerjee, Effect of Additives on the Densification of Reaction Sintered and Presynthesised Spinels, Ceram. Int., 2003, 29(1), p 55–59.

    Article  CAS  Google Scholar 

  38. Z. Quan, Z. Wang, X. Wang, H. Liu, and Y. Ma, Effect of CeO2 Addition on the Sintering Behavior of Pre-Synthesized Magnesium Aluminate Spinel Ceramic Powders, Ceram. Int., 2019, 45(1), p 488–493.

    Article  Google Scholar 

  39. B. Baruah and R. Sarkar, Rare-Earth Oxide-Doped Magnesium Aluminate Spinel - An Overview, Interceram Int. Ceram. Rev., 2020, 69(3), p 40–45.

    Article  CAS  Google Scholar 

  40. B. Ma, Y. Yin, Q. Zhu, Y. Li, G. Li, and J. Yu, In-Situ Formation and Densification of MgAl2O4-SmAlO3 Ceramics by a Single-Stage Reaction Sintering Process, Ceram. Silik., 2015, 59(2), p 109–114.

    CAS  Google Scholar 

  41. Z. Quan, Z. Wang, X. Wang, H. Liu, and Y. Ma, Effects of Sm2O3 Addition on Sintering Behavior of Pre-Synthesized Magnesia-Rich Magnesium Aluminate Spinel, J. Rare Earths, 2021, 39(11), p 1450–1454.

    Article  CAS  Google Scholar 

  42. B. Baruah and R. Sarkar, Effect of Y2O3 Content on Densification, Microstructure and Mechanical Properties of Reaction Sintered Magnesium Aluminate Spinel, Ceram. Int., 2023, 49(1), p 755–765.

    Article  CAS  Google Scholar 

  43. S. Sinhamahapatra, K. Dana, S. Mukhopadhyay, and H.S. Tripathi, Role of Different Rare Earth Oxides on the Reaction Sintering of Magnesium Aluminate Spinel, Ceram. Int., 2019, 45(9), p 11413–11420.

    Article  CAS  Google Scholar 

  44. M.N. Rahaman, Ceramic Processing, CRC Press, Boca Raton, 2017.

    Book  Google Scholar 

  45. R. Sarkar, H.S. Tripathi, and A. Ghosh, Reaction Sintering of Different Spinel Compositions in the Presence of Y2O3, Mater. Lett., 2004, 58(16), p 2186–2191.

    Article  CAS  Google Scholar 

  46. J. Liu, Z. Wang, H. Liu, X. Wang, and Y. Ma, Effect of Y2O3 Doping on the High-Temperature Properties of Magnesia Aluminate Spinel Refractories, J. Aust. Ceram. Soc., 2020, 56(2), p 389–394.

    Article  Google Scholar 

  47. S. Lakiza and L. Lopato, Phase Diagram of the Alumina–Zirconia–Samaria System, J. Amer. Ceram. Soc., 2006, 89(11), p 3516–3521.

    Article  CAS  Google Scholar 

  48. Y. Yijun and Q. Tai, Effect of Y2O3 and Dy2O3 on Microstructure and Mechanical Behaviors of Aluminum Nitride Ceramics, J. Rare Earths, 2006, 24(1), p 239–243.

    Article  Google Scholar 

  49. J. Liu, X. Lv, J. Li, and L. Jiang, Pressureless Sintered Magnesium Aluminate Spinel with Enhanced Mechanical Properties Obtained by the Two-Step Sintering Method, J. Alloys Compd., 2016, 680, p 133–138.

    Article  CAS  Google Scholar 

  50. J. Liu, X. Lv, J. Li, L. Zhang, and J. Peng, Densification and Microstructure of Magnesium Aluminate Spinel for Adding Method of Sc2O3, J. Alloys Compd., 2018, 735, p 394–399.

    Article  CAS  Google Scholar 

  51. K.K. Bamzai, V. Singh, P.N. Kotru, and B.M. Wanklyn, Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal, Strength Mater., 2010, 42(4), p 387–396.

    Article  CAS  Google Scholar 

  52. P.N. Kotru, K.K. Raina, S.K. Kachroo, and B.M. Wanklyn, Microhardness Measurements on Single Crystals of Flux-Grown Rare Earth Perovskites (Orthoferrites, Orthochromites and Aluminates), J. Mater. Sci., 1984, 19(18), p 2582–2592.

    Article  CAS  Google Scholar 

  53. R. Sarkar, Refractory Technology: Fundamentals and Applications, CRC Press, Boca Raton, 2016, p 48

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to offer their sincerest gratitude to Almatis, India, for providing a variety of essential raw materials. Additionally, they would like to express their appreciation to the technical personnel of the Department of Ceramic Engineering, National Institute of Technology, Rourkela, for their timely assistance throughout the course of experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Baruah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, B., Sarkar, R. Influence of Samarium Oxide Addition on Magnesium Aluminate Spinel: A Case of Reaction Sintering. J. of Materi Eng and Perform 33, 4647–4658 (2024). https://doi.org/10.1007/s11665-023-08272-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08272-y

Keywords

Navigation