Skip to main content
Log in

Effects of Working Temperature on Microstructure and Hardness of Ti-6Al-4V Alloy Subjected to Asymmetrical Rolling

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the microstructural evolution alongside its microhardness evaluation has been emphasized for Ti-6Al-4V alloy sheets subjected to asymmetrical cryorolling, warm rolling, and hot rolling up to 50 and 75% thickness reductions. Cryorolling helps in achieving a unique combination of high strength and ductility after proper heat treatment procedures due to ultrafine grain refinement. Microstructural behaviors show that the average grain size is the lowest for Ti-6Al-4V sheet during cryorolling conditions when the average grain sizes recorded are 497, 369, and 216 nm after 50% thickness reduction, and 301, 253, and 106 nm after 75% thickness reduction due to asymmetrical hot rolling, warm rolling, and cryorolling, respectively. It is also observed that the samples subjected to 75% thickness reduction via cryorolling have the highest hardness (VHN395). Furthermore, phase analysis of the dual-phase Ti-(α + β) alloy has been accomplished which showed the effects of the presence of β-Ti phase and the balance alongside its α-Ti counterpart that dictate its mechanical properties. In conjunction with these studies, a simple FEM simulation has been shown for a conventional rolling process using ABAQUS 2019 software for its better understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. M. Lieblich, S. Barriuso, M. Multigner, G. González-Doncel and J.L. González-Carrasco, Thermal Oxidation of Medical Ti6Al4V Blasted with Ceramic Particles: Effects on the Microstructure, Residual Stresses and Mechanical Properties, J. Mech. Behav. Biomed. Mater., 2016, 54, p 173–184.

    Article  CAS  PubMed  Google Scholar 

  2. J.-D. Kim, S.P. Murugan, J.W. Kim, C.-K. Chun, S.W. Kim, J.-K. Hong et al., α/β Phase Transformation and Dynamic Recrystallization Induced Microstructure Development in Fine-Grained Ti-6Al-4V Friction Stir Weld, Mater. Charact., 2021, 178, p 111300.

    Article  CAS  Google Scholar 

  3. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation, JOM, 2006, 58, p 33–39.

    Article  Google Scholar 

  4. R. Jayaganthan, H.-G. Brokmeier, B. Schwebke and S.K. Panigrahi, Microstructure and Texture Evolution in Cryorolled Al 7075 alloy, J Alloys Compd, 2010, 496, p 183–188.

    Article  CAS  Google Scholar 

  5. M. Liu, S. Zhang, F. Li, Y. Luo, Y. Yao, H. Zhang et al., Tailoring the Strength and Ductility of Al0.25CoCrFeNi High Entropy Alloy through Cryo-Rolling and Annealing, Mater. Sci. Eng. A, 2021, 826, p 141964.

    Article  CAS  Google Scholar 

  6. F. Yu, Y. Zhang, C. Kong and H. Yu, High strength and toughness of Ti-6Al-4V Sheets via Cryorolling and Short-Period Annealing, Mater. Sci. Eng. A, 2022, 854, p 143766. https://doi.org/10.1016/j.msea.2022.143766

    Article  CAS  Google Scholar 

  7. F. Yu, Y. Zhang, C. Kong and H. Yu, Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Sheets via Room-Temperature Rolling and Cryorolling, Mater. Sci. Eng. A, 2022, 834, p 142600. https://doi.org/10.1016/j.msea.2022.142600

    Article  CAS  Google Scholar 

  8. Q. Xiao, L. Wang, Y.-J. Liang and Y. Xue, Annealing Hardening in Cryo-Rolled High-Entropy Alloys by Belated Deformation Twinning, Mater. Sci. Eng. A, 2021, 801, p 140403.

    Article  CAS  Google Scholar 

  9. V. Kumar and D. Kumar, Investigation of Tensile Behaviour of Cryorolled and Room Temperature Rolled 6082 Al Alloy, Mater. Sci. Eng. A, 2017, 691, p 211–217.

    Article  CAS  Google Scholar 

  10. D.Y. Kim, D.M. Kim and H.W. Park, Numerical and Experimental Study of End-Milling Process of Titanium Alloy with a Cryogenic Internal Coolant Supply, Int. J. Adv. Manuf. Technol., 2019, 105, p 2957–2975. https://doi.org/10.1007/s00170-019-04425-3

    Article  Google Scholar 

  11. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev and S.L. Semiatin, Formation of Nanostructures in Commercial-Purity Titanium via Cryorolling, Acta Mater., 2013, 61, p 1167–78. https://doi.org/10.1016/j.actamat.2012.10.026

    Article  CAS  ADS  Google Scholar 

  12. S.-W. Choi, J.W. Won, S. Lee, J.K. Hong and Y.S. Choi, Deformation Twinning Activity and Twin Structure Development of Pure Titanium at Cryogenic Temperature, Mater. Sci. Eng. A, 2018, 738, p 75–80. https://doi.org/10.1016/j.msea.2018.09.091

    Article  CAS  Google Scholar 

  13. C. Machai and D. Biermann, Machining of β-titanium-alloy Ti-10V-2Fe-3Al under Cryogenic Conditions: Cooling with Carbon Dioxide Snow, J. Mater. Process. Technol., 2011, 211, p 1175–83. https://doi.org/10.1016/j.jmatprotec.2011.01.022

    Article  CAS  Google Scholar 

  14. S.S. Gill and J. Singh, Effect of Deep Cryogenic Treatment on Machinability of Titanium Alloy (Ti-6246) in Electric Discharge Drilling, Mater. Manuf. Process., 2010, 25, p 378–385. https://doi.org/10.1080/10426910903179914

    Article  CAS  Google Scholar 

  15. Q. Chao, P.D. Hodgson and H. Beladi, Microstructure and Texture Evolution during Symmetric and Asymmetric Rolling of a Martensitic Ti-6Al-4V Alloy, Metall. Mater. Trans. A, 2016, 47, p 531–545.

    Article  CAS  Google Scholar 

  16. H. Xiao, Z. Ren and X. Liu, New Mechanism Describing the Limiting Producible Thickness in Ultra-Thin Strip Rolling, Int. J. Mech. Sci., 2017, 133, p 788–793.

    Article  Google Scholar 

  17. L. Yang and Y.-Q. Yang, Deformed Microstructure and Texture of Ti6Al4V Alloy, Trans. Nonferr. Met. Soc. China, 2014, 24, p 3103–3110.

    Article  CAS  Google Scholar 

  18. Z. Yanushkevich, S.V. Dobatkin, A. Belyakov and R. Kaibyshev, Hall-Petch Relationship for Austenitic Stainless Steels Processed by Large Strain Warm Rolling, Acta Mater., 2017, 136, p 39–48.

    Article  CAS  ADS  Google Scholar 

  19. J. Tang, H.Y. Luo and Y.B. Zhang, Enhancing the Surface Integrity and Corrosion Resistance of Ti-6Al-4V Titanium Alloy through Cryogenic Burnishing, Int. J. Adv. Manuf. Technol., 2017, 88, p 2785–2793.

    Article  Google Scholar 

  20. P.S. Sahoo, A. Meher, M.M. Mahapatra and P.R. Vundavilli, Understanding the Fabrication of Ultrafine Grains through Severe Plastic Deformation Techniques: An Overview, JOM, 2022 https://doi.org/10.1007/s11837-022-05442-6

    Article  Google Scholar 

  21. J.C. Williams and R.R. Boyer, Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components, Metals (Basel), 2020, 10, p 705.

    Article  Google Scholar 

  22. G. Lütjering and J.C. Williams, Titanium, Springer, Cham, 2007.

    Google Scholar 

  23. N. Balasubramanian and T.G. Langdon, The Strength–Grain Size Relationship in Ultrafine-Grained Metals, Metall. Mater. Trans. A, 2016, 47, p 5827–5838.

    Article  CAS  Google Scholar 

  24. Q. Shi, Y.Y. Tse and R.L. Higginson, Effects of Processing Parameters on Relative Density, Microhardness and Microstructure of Recycled Ti-6Al-4V from Machining Chips Produced by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2016, 651, p 248–258.

    Article  CAS  Google Scholar 

  25. H. Kim, H. Ha, J. Lee, S. Son, H.S. Kim, H. Sung et al., Outstanding Mechanical Properties of Ultrafine-Grained Al 7075 Alloys by High-Pressure Torsion, Mater. Sci. Eng. A, 2021, 810, p 141020.

    Article  CAS  Google Scholar 

  26. I.P. Semenova, A.V. Polyakov, V.V. Polyakova, Y. Huang, R.Z. Valiev and T.G. Langdon, High-Cycle Fatigue Behavior of an Ultrafine-Grained Ti-6Al-4V Alloy Processed by ECAP and Extrusion, Adv. Eng. Mater., 2016, 18, p 2057–2062.

    Article  CAS  Google Scholar 

  27. G. Wang, D. Song, Z. Zhou, Y. Liu, N. Liang, Y. Wu et al., Developing High-Strength Ultrafine-Grained Pure Al via Large-Pass ECAP and Post Cryo-Rolling, J. Mater. Res. Technol., 2021, 15, p 2419–2428.

    Article  CAS  Google Scholar 

  28. A. Dhal, B. Prathyusha, R. Kumar and S.K. Panigrahi, Twin Evolution and Work-Hardening Phenomenon of a Bulk Ultrafine Grained Copper with High Thermal Stability and Strength-Ductility Synergy, Mater. Sci. Eng. A, 2021, 802, p 140622.

    Article  CAS  Google Scholar 

  29. Q. Xiao, Y.-J. Liang, Q. Chen, G. Sha, W. Lu, W. Guo et al., Towards Stronger High-Entropy Alloy by Nanoprecipitation-Hardened Ultrafine-/Nano-Grains, Mater. Sci. Eng. A, 2020, 787, p 139474.

    Article  CAS  Google Scholar 

  30. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength–Ductility Trade-Off, Nature, 2016, 534, p 227–230.

    Article  CAS  PubMed  ADS  Google Scholar 

  31. N. Yumak and K. Aslantaş, A Review on Heat Treatment Efficiency in Metastable β Titanium Alloys: The Role of Treatment Process and Parameters, J. Mater. Res. Technol., 2020, 9, p 15360–80. https://doi.org/10.1016/j.jmrt.2020.10.088

    Article  CAS  Google Scholar 

  32. B. Mishra, V. Singh, R. Sarkar, A. Mukhopadhyay, K. Gopinath, V. Madhu et al., Dynamic Recovery and Recrystallization Mechanisms in Secondary B2 Phase and Austenite Matrix during Hot Deformation of Fe-Mn-Al-C-(Ni) Based Austenitic Low-Density Steels, Mater. Sci. Eng. A, 2022, 842, p 143095.

    Article  CAS  Google Scholar 

  33. Y.S. Li, Y. Zhang, N.R. Tao and K. Lu, Effect of the Zener-Hollomon Parameter on the Microstructures and Mechanical Properties of Cu Subjected to Plastic Deformation, Acta Mater., 2009, 57, p 761–772.

    Article  CAS  ADS  Google Scholar 

  34. S.W. Xu, S. Kamado and T. Honma, Recrystallization Mechanism and the Relationship Between Grain Size and Zener–Hollomon Parameter of Mg-Al-Zn-Ca Alloys during Hot Compression, Scr. Mater., 2010, 63, p 293–296.

    Article  CAS  Google Scholar 

  35. S.-H. Cho and Y.-C. Yoo, Static Recrystallization Kinetics of 304 Stainless Steels, J. Mater. Sci., 2001, 36, p 4273–4278.

    Article  CAS  ADS  Google Scholar 

  36. X. Li and K. Lu, Playing with Defects in Metals, Nat. Mater., 2017, 16, p 700–701.

    Article  CAS  PubMed  ADS  Google Scholar 

  37. H. Ding and Y.C. Shin, Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium, J. Manuf. Sci. Eng., 2014 https://doi.org/10.1115/1.4027207

    Article  Google Scholar 

  38. H. Yu, M. Yan, J. Li, A. Godbole, C. Lu, K. Tieu et al., Mechanical Properties and Microstructure of a Ti-6Al-4V Alloy Subjected to Cold Rolling, Asymmetric Rolling and Asymmetric Cryorolling, Mater. Sci. Eng. A, 2018, 710, p 10–16. https://doi.org/10.1016/j.msea.2017.10.075

    Article  CAS  Google Scholar 

  39. Y. Shi, M. Li, D. Guo, T. Ma, Z. Zhang, X. Li, G. Zhang and X. Zhang, Extraordinary Toughening by Cryorolling in Zr, Adv. Eng. Mater., 2014, 16, p 167–70.

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Pandey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, P.S., Mahapatra, M.M., Vundavilli, P.R. et al. Effects of Working Temperature on Microstructure and Hardness of Ti-6Al-4V Alloy Subjected to Asymmetrical Rolling. J. of Materi Eng and Perform 33, 1218–1228 (2024). https://doi.org/10.1007/s11665-023-08076-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08076-0

Keywords

Navigation