Skip to main content
Log in

Effect of Frictional Contact Surface on Maximum Pressing Load during Equal Channel Angular Pressing Process

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Equal channel angular pressing (ECAP) is one of the advanced manufacturing methods for the production of nanostructured samples. The ECAPed materials showed exceptional mechanical properties with simultaneous high strength and good elongation features. Recently, the application of ECAP method for the production of industrial samples has widely been reported. Due to the required high pressing load in ECAP process, the length of the produced samples is limited. This study investigates the rooms for the reduction in the pressing load by change in frictional surfaces. Here, a novel design of ECAP punch and die is proposed, where most of the friction surfaces are changing from ‘soft sample-to-brittle die’ to ‘brittle die-to-brittle punch’ contact surfaces. By changing the contact surfaces between punch and die, the opportunity for the preparation of frictional surfaces is provided and the total frictional surfaces is reduced. The results of the numerical analysis and experimental measurements showed that about 2.2-9.8% reduction in the maximum required pressing load is feasible. Further reduction is also possible by more surface preparation. Optical microscopy is used to investigate the contact surfaces after the process, and scanning and transmission electron microscopies are used to analyze the rate of the grain refinement of the samples after conventional and novel ECAP processes. The experimental finding is supported by 3D finite element analysis (FEM). The calculated maximum required pressing force in novel and conventional ECAP dies is in good agreement with the experimental measurements. The FEM analysis revealed that the reduction in the pressing load by the modification of frictional surfaces is a practical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, An Investigation of Microstructural Evolution During Equal-Channel Angular Pressing, Acta Mater., 1997, 45(11), p 4733–4741.

    Article  CAS  Google Scholar 

  2. J. Sun et al., Achieving Excellent Ductility in High-Strength Mg-10.6Gd-2 Ag Alloy via Equal Channel Angular Pressing, J. Alloys Compd., 2020, 817, p 152688.

    Article  CAS  Google Scholar 

  3. H.S. Kim, M.H. Seo, and S.I. Hong, On the Die Corner Gap Formation in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2000, 291(1–2), p 86–90.

    Article  Google Scholar 

  4. A.B. Sankuru, M. Hariram, K. Gudimetla, B. Ravisankar, and S.P. KB, SP KB, Optimization of Processing Temperature and Back Pressure of Equal Channel Angular Pressing for Achieving Crack-Free Fine Grained Magnesium, Mater. Today Proc., 2021, 47, p 4611–4616.

    Article  CAS  Google Scholar 

  5. S. Wang, W. Liang, Y. Wang, L. Bian, and K. Chen, A Modified Die for Equal Channel Angular Pressing, J. Mater. Process. Technol., 2009, 209(7), p 3182–3186.

    Article  CAS  Google Scholar 

  6. N. Sadasivan, M. Balasubramanian, R. Venkatesh, S. Vigneshram, and T. Sunil, Influence of Equal Channel Angular Pressing in an Acute Angle Die with a Back Pressure Notch on Grain Refinement, Torsion and Mechanical Properties Of Aluminium, Materwiss. Werksttech., 2019, 50(2), p 155–164.

    Article  CAS  Google Scholar 

  7. V.S. Rao, B.P. Kashyap, N. Prabhu, and P.D. Hodgson, T-shaped Equi-Channel Angular Pressing of Pb-Sn Eutectic and Its Tensile Properties, Mater. Sci. Eng. A, 2008, 486(1–2), p 341–349.

    Article  Google Scholar 

  8. S. Rusz, L. Čížek, L.A. Dobrzański, and S. Tylšar, ECAP Methods Application on Selected Non-Ferrous Metals and Alloys, Arch. Mater. Sci. Eng., 2010, 43(2), p 69–76.

    Google Scholar 

  9. A. Azushima and K. Aoki, Properties of Ultrafine-Grained Steel by Repeated Shear Deformation of Side Extrusion Process, Mater. Sci. Eng. A, 2002, 337(1–2), p 45–49.

    Article  Google Scholar 

  10. A. Ma, Y. Nishida, K. Suzuki, I. Shigematsu, and N. Saito, Characteristics of Plastic Deformation by Rotary-Die Equal-Channel Angular Pressing, Scr. Mater., 2005, 52(6), p 433–437.

    Article  CAS  Google Scholar 

  11. K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon, Development of a Multi-pass Facility for Equal-Channel Angular Pressing to High Total Strains, Mater. Sci. Eng. A, 2000, 281(1–2), p 82–87.

    Article  Google Scholar 

  12. A.A. Mukhametgalina et al., Ultrasonic Treatment of Ti-5Al-05 V Alloy Subjected to Equal-Channel Angular Pressing, Met. Mater. Int., 2022, 28(5), p 1257–1263.

    Article  CAS  Google Scholar 

  13. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of Ultra-fine Grained Materials, Scr. Mater., 1996, 35(2), p 143–146.

    Article  CAS  Google Scholar 

  14. A.I. Rudskoi, A.M. Zolotov, R.A. Parshikov, and E.Y. Raskatov, Friction Problems During ECA-Pressing, Mater. Today Proc., 2020, 30, p 683–687.

    Article  Google Scholar 

  15. M. Eskandarzade and M.N. Ershadi, Experimental and Numerical Investigation of the Frictional Forces in Equal Channel Angular Pressing, Uludağ Univ. J. Fac. Eng., 2021, 26(1), p 65–78.

    Article  Google Scholar 

  16. V.A. de Souza, I. Watanabe, and A. Yanagida, Numerical Estimation of Frictional Effects in Equal Channel Angular Extrusion, Mater. Trans., 2016, 57(9), p 1399–1403.

    Article  Google Scholar 

  17. A. Aminnudin, P. Pratikto, A. Purnowidodo, and Y.S. Irawan, The Analysis of Friction Effect on Equal Channel Angular Pressing (ECAP) Process on Aluminium 5052 to Homogeneity of Strain Distribution, East. Eur. J. Enterp. Technol., 2018, 2(1(92)), p 57–62.

    Google Scholar 

  18. F. Djavanroodi and M. Ebrahimi, Effect of Die Channel Angle, Friction and Back Pressure in the Equal Channel Angular Pressing Using 3D Finite Element Simulation, Mater. Sci. Eng. A, 2010, 527(4–5), p 1230–1235.

    Article  Google Scholar 

  19. J.-P. Mathieu, S. Suwas, A. Eberhardt, L.S. Tóth, and P. Moll, A New Design for Equal Channel Angular Extrusion, J. Mater. Process. Technol., 2006, 173(1), p 29–33.

    Article  CAS  Google Scholar 

  20. Z.A. Khan, U. Chakkingal, and P. Venugopal, Analysis of Forming Loads, Microstructure Development and Mechanical Property Evolution During Equal Channel Angular Extrusion of a Commercial Grade Aluminum Alloy, J. Mater. Process. Technol., 2003, 135(1), p 59–67.

    Article  CAS  Google Scholar 

  21. M. Eskandarzade, A. Masoumi, and G. Faraji, Numerical and Analytical Investigation of an Ultrasonic Assisted ECAP Process, J. Theor. Appl. Vib. Acoust., 2016, 2(2), p 18.

    Google Scholar 

  22. S. Dumoulin, H.J. Roven, J.C. Werenskiold, and H.S. Valberg, Finite Element Modeling of Equal Channel Angular Pressing: Effect of Material Properties, Friction and Die Geometry, Mater. Sci. Eng. A, 2005, 410, p 248–251.

    Article  Google Scholar 

  23. M. Ebrahimi, Numerical Analysis of Conventional and Modified Equal Channel Angular Pressing, Trans. Indian Inst. Met., 2019, 72(9), p 2263–2273.

    Article  CAS  Google Scholar 

  24. R. Bhandari, P. Biswas, A. Pathania, M. Mallik, and M. Kumar Mondal, Equal Channel Angular Pressing Die Design Through Finite Element Analysis Method for Non-strain Hardening Material, Can. Metall. Q., 2022, 61, p 1–20.

    Article  Google Scholar 

  25. S. Nazari Tiji, A. Asgari, H. Gholipour, and F. Djavanroodi, Modeling of Equal Channel Forward Extrusion Force Using Response Surface Approach, Proc. Inst. Mech. Eng. Part. B. J. Eng. Manuf., 2018, 232(4), p 713–719.

    Article  Google Scholar 

  26. M. Ebrahimi, F. Pashmforoush, and C. Gode, Evaluating Influence Degree of Equal-Channel Angular Pressing Parameters Based on Finite Element Analysis and Response Surface Methodology, J. Braz. Soc. Mech. Sci. Eng., 2019, 41(2), p 95.

    Article  Google Scholar 

  27. R.A. Parshikov and A.M. Zolotov, Influence of Contact Friction on the Kinematics of Metal Flow During Equal Channel Angular Pressing, Key Eng. Mater., 2019, 822, p 171–177.

    Article  Google Scholar 

  28. I. Balasundar and T. Raghu, Effect of Friction Model in Numerical Analysis of Equal Channel Angular Pressing Process, Mater. Des., 2010, 31(1), p 449–457.

    Article  Google Scholar 

  29. R. Jivan, M. Eskandarzade, S. Bewsher, M. Leighton, M. Mohammadpour, and S. Saremi-Yarahmadi, Application of Solid Lubricant for Enhanced Frictional Efficiency of Deep Drawing Process, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2022, 236(1), p 624–634.

    Article  CAS  Google Scholar 

  30. A.S. Miavaghi, H. Kangarlou, and M. Eskandarzade, Comparison Between Frictional Behavior of the Soft and Brittle Materials at Different Contact Pressures, Leban. Sci. J., 2017, 18(1), p 98.

    Article  CAS  Google Scholar 

  31. A.-E. Jiménez and M.-D. Bermúdez, Friction and wear, in Tribology for Engineers, (Elsevier, 2011), pp. 33–63

  32. Abaqus 6.14, Abaqus Theory Guide (2020)

  33. A.A. Mendes Filho, E.F. Prados, G.T. Valio, J.B. Rubert, V.L. Sordi, and M. Ferrante, Severe Plastic Deformation by Equal Channel Angular Pressing: Product Quality and Operational Details, Mater. Res., 2011, 14(3), p 335–339.

    Article  CAS  Google Scholar 

  34. F. Djavanroodi and M. Ebrahimi, Effect of Die Parameters and Material Properties in ECAP with Parallel Channels, Mater. Sci. Eng. A, 2010, 527(29–30), p 7593–7599.

    Article  Google Scholar 

  35. L. Hua, X. Hu, and X. Han, Microstructure Evolution of Annealed 7075 Aluminum Alloy and Its Influence on Room-Temperature Plasticity, Mater. Des., 2020, 196, p 109192.

    Article  CAS  Google Scholar 

  36. D.R. Fang et al., Effect of Equal Channel Angular Pressing on Tensile Properties and Fracture Modes of Casting Al-Cu alloys, Mater. Sci. Eng. A, 2006, 426(1–2), p 305–313.

    Article  Google Scholar 

  37. S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, and K. Jayasankar, Microstructural and Mechanical Properties of Al 7075 Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 533, p 50–54.

    Article  CAS  Google Scholar 

  38. M. Cabibbo, Microstructure Strengthening Mechanisms in Different Equal Channel Angular Pressed Aluminum Alloys, Mater. Sci. Eng. A, 2013, 560, p 413–432.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Morad Sheikhi.

Ethics declarations

Conflict of interest

There are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, B., Sheikhi, M.M., Fallah, M.M. et al. Effect of Frictional Contact Surface on Maximum Pressing Load during Equal Channel Angular Pressing Process. J. of Materi Eng and Perform 33, 741–750 (2024). https://doi.org/10.1007/s11665-023-08039-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08039-5

Keywords

Navigation