Skip to main content
Log in

Investigation for an Alternative Material for the Development of a Clubfoot Brace to Improve Sustainability

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigated the impact of 3D printing technology and the feasibility of adopting an alternative material to improve sustainability in the manufacture of a clubfoot brace. An advanced material selection process gave ABS, PLA and PETG materials as the optimum materials for the manufacture of a low-cost stiffness-limited clubfoot brace, using 3D printing technology. However, a cheaper recycled PETG (rPETG) filament material was used in place of the earlier selected PETG to additively manufacture specimens for the mechanical tests. Taguchi design of experiment was adopted in order to link these filament materials together with other 3D printing parameters such as infill percentage and layer height to identify the optimum input parameter combination for flexural, compressive and tensile strength. Test specimens were designed on Creo parametric software as per ASTM standard and 3D printed using parameter combinations designed with the Taguchi technique. Responses for the signal-to-noise ratios of the respective tests revealed that filament material is the most influential parameter, followed by infill percentage for flexural strength and layer height for compressive strength. Main effects plots of the SN ratios identified the rPETG material as the optimum for flexural strength at 13% infill percentage and 0.15 mm layer height. While PLA gave the best compressive strength at parameter combination of 13% infill percentage and 0.10 mm layer height. Results obtained from the grey relational analysis for multi-response optimization revealed that rPETG is the highest-ranking material with a grey relational grade of 0.801.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. M. Salmi, Additive Manufacturing Processes in Medical Applications, Materials (Basel), 2021, 14(1), p 1–16. https://doi.org/10.3390/ma14010191

    Article  CAS  Google Scholar 

  2. S. Bijadi, E. de Bruijn, E.Y. Tempelman, and J. Oberdorf, Application of multi-material 3D printing for improved functionality and modularity of open source low-cost prosthetics: A case study. in Frontiers in biomedical devices, (vol. 40672, p. V001T10A003). American Society of Mechanical Engineers. (2017). https://doi.org/10.1115/DMD2017-3540

  3. A.J. Sheoran, H. Kumar, P.K. Arora, and G. Moona, Bio-Medical Applications of Additive Manufacturing: A Review, Procedia Manuf., 2020, 51(2019), p 663–670. https://doi.org/10.1016/j.promfg.2020.10.093

    Article  Google Scholar 

  4. A. Bhatia and A.K. Sehgal, Additive Manufacturing Materials, Methods and Applications: A review, Mater. Today Proc., 2021 https://doi.org/10.1016/j.matpr.2021.04.379

    Article  Google Scholar 

  5. A. Mirkouei, B. Silwal, and L. Ramiscal, Enhancing Economic and Environmental Sustainability Benefits Across the Design and Manufacturing of Medical Devices: A Case Study of Ankle Foot Orthosis. p 1–9, 2018. https://doi.org/10.1115/DETC2017-68427

  6. S. Mohamaddan, C.S. Fu, A.H. Rasit, S.Z.M. Dawal, and K. Case, Development of Adjustable Foot Corrective Device for Clubfoot Treatment, Pertanika J. Sci. Technol., 2017, 25(S5), p 251–258.

    Google Scholar 

  7. B. Savonen, J. Gershenson, J.K. Bow, and J.M. Pearce, Open-Source Three-Dimensional Printable Infant Clubfoot Brace, JPO J. Prosthet. Orthot., 2020, 32(2), p 149–158. https://doi.org/10.1097/jpo.0000000000000257

    Article  Google Scholar 

  8. T. Pereira, J.V. Kennedy, and J. Potgieter, A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job, Procedia Manuf., 2019, 30, p 11–18. https://doi.org/10.1016/j.promfg.2019.02.003

    Article  Google Scholar 

  9. A. Kumar and D. Chhabra, Adopting Additive Manufacturing As a Cleaner Fabrication Framework for Topologically Optimized Orthotic Devices: Implications Over Sustainable Rehabilitation, Clean. Eng. Technol, 2022 https://doi.org/10.1016/j.clet.2022.100559

    Article  Google Scholar 

  10. S.G. Sarvankar and S.N. Yewale, Additive Manufacturing in Automobile Industry, Int. J. Res. Aeronaut. Mech. Eng., 2019, 7(4), p 1–10.

    Google Scholar 

  11. M.I. Rakib, I.A. Choudhury, S. Hussain, and N.A.A. Osman, Design and Biomechanical Performance Analysis of a User-Friendly Orthotic Device, Mater. Des., 2015, 65, p 716–725. https://doi.org/10.1016/j.matdes.2014.09.075

    Article  CAS  Google Scholar 

  12. R. Agrawal, Sustainable Material Selection for Additive Manufacturing Technologies: A Critical Analysis of Rank Reversal Approach, J. Clean. Prod., 2021, 296, p 126500. https://doi.org/10.1016/j.jclepro.2021.126500

    Article  Google Scholar 

  13. M.F. Ashby, K. Johnson, Materials and Design: The Art and Science of Material Selection in Product Design, 2013, 3, p 128–155. https://doi.org/10.1016/B978-0-08-098205-2.00001-9

  14. Z. Huda and P. Edi, Materials Selection in Design of Structures and Engines of Supersonic Aircrafts: A Review, Mater. Des., 2013, 46, p 552–560. https://doi.org/10.1016/j.matdes.2012.10.001

    Article  CAS  Google Scholar 

  15. S.N.A. Safri, M.T.H. Sultan, M. Jawaid, and K. Jayakrishna, Impact Behaviour of Hybrid Composites for Structural Applications: A Review, Compos. B Eng., 2018, 133, p 112–121. https://doi.org/10.1016/j.compositesb.2017.09.008

    Article  CAS  Google Scholar 

  16. K.J. Ng, K. Duke, and E. Lou, Investigation of Future 3D Printed Brace Design Parameters: Evaluation of Mechanical Properties and Prototype Outcomes, J. 3D Print. Med., 2019, 3(4), p 171–184. https://doi.org/10.2217/3dp-2019-0012

    Article  CAS  Google Scholar 

  17. C. Vivek, R. Ranganathan, S. Ganesan, A. Pugalendhi, M.P. Sreekanth, and S. Arumugam, Development of Customized Orthosis for Congenital Deformity Using Additive Manufacturing, Rapid Prototyp. J., 2018, 25(3), p 645–652. https://doi.org/10.1108/RPJ-02-2018-0036

    Article  Google Scholar 

  18. S. Kuhl, T.M. Cook, J. Morcuende, and N. Grosland, Clubfoot Kickbar: Development of an Improved Brace for Use Following Correction of Clubfoot. in Frontiers in Biomedical Devices. (vol. 83549, pp. V001T03A001). American Society of Mechanical Engineers. (2020). https://doi.org/10.1115/DMD2020-9043

  19. C. Alves, Bracing in Clubfoot: Do We Know Enough?, J. Child. Orthop., 2019, 13(3), p 258–264. https://doi.org/10.1302/1863-2548.13.190069

    Article  CAS  Google Scholar 

  20. R.L. Forshey, W.L. Feczko, L.P. Lilienthal, A. Bashore, B.D. Fouse, M. Lo, B.J. Mellott, S.J. Rasinske, L.R. Southall, and J.M. Witt, Force Characterization and Manufacturing of a Dynamic Unilateral Clubfoot Brace. Collaboratory/Engineering Symposium. 8., 2020. https://mosaic.messiah.edu/engr2020/8

  21. T.A. Reddy, P. Kawya, S. Srija, and M. Dhanalakshmi, An Alternative Footbrace for Clubfoot Correction. in Proceedings B-HTC 2020 - 1st IEEE Bangalore Humanit. Technology Conference, pp. 4–9, (2020). https://doi.org/10.1109/B-HTC50970.2020.9297953

  22. L. Desai, F. Oprescu, A. DiMeo, and J.A. Morcuende, Bracing in the Treatment of Children with Clubfoot: Past, Present, and Future, Iowa Orthop. J., 2010, 30, p 15–23.

    Google Scholar 

  23. M.N. Abdullah Sani, M.J. Mohamed Kamil, B. Azahari, and A.R. Sulaiman, The Assessment of the Clubfoot Children ’ S Orthotic Need for the Development of the Foot Abduction Orthosis (Fao) Prototype Design”, Int. J. Adv. Sci. Eng. Technol., 2019, 7(1), p 20–24.

    Google Scholar 

  24. M.S. Alqahtani, A. Al-Tamimi, H. Almeida, G. Cooper, and P. Bartolo, A Review on the Use of Additive Manufacturing to Produce Lower Limb Orthoses, Prog. Addit. Manuf., 2020, 5(2), p 85–94. https://doi.org/10.1007/s40964-019-00104-7

    Article  Google Scholar 

  25. D. Pinto, A. Agrawal, A. Agrawal, S. Sinha, and A. Aroojis, Factors Causing Dropout From Treatment During the Ponseti Method of Clubfoot Management: The Caregivers’ Perspective, J. Foot Ankle Surg., 2022, 61(4), p 730–734. https://doi.org/10.1053/j.jfas.2021.11.005

    Article  Google Scholar 

  26. A. Aroojis, T. Pandey, A. Dusa, A.G. Krishnan, R. Ghyar, and B. Ravi, Development of A Functional Prototype of A SMART (Sensor-integrated for Monitoring And Remote Tracking) Foot Abduction Brace for Clubfoot Treatment: A Pre-Clinical Evaluation, Int. Orthop., 2021, 45(9), p 2401–2410. https://doi.org/10.1007/s00264-021-05042-0

    Article  Google Scholar 

  27. L.E. Zionts and F.R. Dietz, Bracing Following Correction of Idiopathic Clubfoot Using the Ponseti Method, J. Am. Acad. Orthop. Surg., 2010, 18(8), p 486–493. https://doi.org/10.5435/00124635-201008000-00005

    Article  Google Scholar 

  28. G.C. Initiative, Ending Clubfoot Disability: A Global Strategy. pp. 1–32, (2017). [Online]. Available: http://globalclubfoot.com/wp-content/uploads/2017/06/Global-Clubfoot-Strategy-final-copy.pdf

  29. M. Kadhum, M.H. Lee, J. Czernuszka, and C. Lavy, An Analysis of the Mechanical Properties of the Ponseti Method in Clubfoot Treatment, Appl. Bionics Biomech., 2019 https://doi.org/10.1155/2019/4308462

    Article  Google Scholar 

  30. A. Agarwal and S. Barik, Effect of Bar Length on Foot Abduction and Ankle Dorsiflexion in Steenbeek Foot Abduction Brace, J. Pediatr. Orthop. Part B, 2019, 28(6), p 564–571. https://doi.org/10.1097/BPB.0000000000000652

    Article  Google Scholar 

  31. J. Barrios-Muriel, F. Romero-Sánchez, F.J. Alonso-Sánchez, and D.R. Salgado, Advances in Orthotic and Prosthetic Manufacturing: A Technology Review, Materials (Basel), 2020 https://doi.org/10.3390/ma13020295

    Article  Google Scholar 

  32. F.S. Shahar et al., A Review on the Orthotics and Prosthetics and the Potential of Kenaf Composites as Alternative Materials for Ankle-Foot Orthosis, J. Mech. Behav. Biomed. Mater., 2019, 99, p 169–185. https://doi.org/10.1016/j.jmbbm.2019.07.020

    Article  CAS  Google Scholar 

  33. World Health Organization, Assistive Product Specification For Procurement: Therapeutic footwear. (2019). [Online]. Available: https://www.who.int/phi/implementation/assistive_technology/APS19-Therapeutic_Footwear_oc_use.pdf?ua=1.

  34. G. Design, CES EduPack 2018 Quick start exercises. Ansys GRANTA EduPack software, ANSYS, Inc., Cambridge, UK, 2018. https://www.ansys.com/products/materials

  35. C.E. Grimes, H. Holmer, J. Maraka, B. Ayana, L. Hansen, and C.B.D. Lavy, Cost-Effectiveness of Club-Foot Treatment in Low-Income and Middle-Income Countries by the Ponseti Method, BMJ Glob. Heal., 2016, 1(1), p 1–6. https://doi.org/10.1136/bmjgh-2015-000023

    Article  Google Scholar 

  36. T.S. Dinesh, P. Kotian, P. Sujir, V. Joe, and A. Rajendra, Steenbeek Foot Abduction Brace for Clubfoot: Cost-Effective but is it Effective? A Prospective Study, Asian J. Pharm. Clin. Res., 2017, 10(5), p 99–102. https://doi.org/10.22159/ajpcr.2017.v10i5.16296

    Article  Google Scholar 

  37. M.F. Ashby, Multi-Objective Optimization in Material Design and Selection, Acta Mater., 2000, 48(1), p 359–369. https://doi.org/10.1016/S1359-6454(99)00304-3

    Article  CAS  Google Scholar 

  38. P. Sirisalee, M.F. Ashby, G.T. Parks, and P.J. Clarkson, Multi-Criteria Material Selection in Engineering Design, Adv. Eng. Mater., 2004, 6(1–2), p 84–92. https://doi.org/10.1002/adem.200300554

    Article  Google Scholar 

  39. V.B. Nidagundi, R. Keshavamurthy, and C.P.S. Prakash, Studies on Parametric Optimization for Fused Deposition Modelling Process, Mater. Today Proc., 2015, 2(4–5), p 1691–1699. https://doi.org/10.1016/j.matpr.2015.07.097

    Article  CAS  Google Scholar 

  40. A. Alafaghani and A. Qattawi, Investigating the Effect of Fused Deposition Modeling Processing Parameters Using Taguchi Design of Experiment Method, J. Manuf. Process., 2018, 36(June), p 164–174. https://doi.org/10.1016/j.jmapro.2018.09.025

    Article  Google Scholar 

  41. L.H. Ho, S.Y. Feng, and T.M. Yen, A New Methodology for Customer Satisfaction Analysis: Taguchi’s Signal-to-Noise Ratio Approach, J. Serv. Sci. Manag., 2014 https://doi.org/10.4236/jssm.2014.73021

    Article  Google Scholar 

  42. N. Semioshkina and G. Voigt, An Overview on Taguchi Method, J. Radiat. Res., 2006, 47(2), p A95–A100.

    Article  CAS  Google Scholar 

  43. B.M. Girish, H.S. Siddesh, and B.M. Satish, Taguchi Grey Relational Analysis for Parametric Optimization of Severe Plastic Deformation Process, SN Appl. Sci., 2019, 1(8), p 1–11. https://doi.org/10.1007/s42452-019-0982-6

    Article  CAS  Google Scholar 

  44. P.A. Sylajakumari, R. Ramakrishnasamy, and G. Palaniappan, Taguchi Grey Relational Analysis for Multi-Response Optimization of Wear in co-Continuous Composite, Materials (Basel), 2018, 11(9), p 1–17. https://doi.org/10.3390/ma11091743

    Article  CAS  Google Scholar 

  45. V. Wankhede, D. Jagetiya, A. Joshi, and R. Chaudhari, Experimental Investigation of FDM Process Parameters Using Taguchi Analysis, Mater. Today Proc., 2019, 27, p 2117–2120. https://doi.org/10.1016/j.matpr.2019.09.078

    Article  Google Scholar 

  46. M. Heidari-Rarani, N. Ezati, P. Sadeghi, and M.R. Badrossamay, Optimization of FDM Process Parameters for Tensile Properties of Polylactic Acid Specimens Using Taguchi Design of Experiment Method, J. Thermoplast. Compos. Mater., 2022, 35(12), p 2435–2452. https://doi.org/10.1177/0892705720964560

    Article  CAS  Google Scholar 

  47. M. Kam, A. İpekçi, and Ö. Şengül, Investigation of the Effect of FDM Process Parameters on Mechanical Properties of 3D Printed PA12 Samples Using Taguchi method, J. Thermoplast. Compos. Mater., 2021 https://doi.org/10.1177/08927057211006459

    Article  Google Scholar 

  48. N. Elmrabet and P. Siegkas, Dimensional Considerations on the Mechanical Properties of 3D Printed Polymer Parts, Polym. Test., 2020, 90, p 106656. https://doi.org/10.1016/j.polymertesting.2020.106656

    Article  CAS  Google Scholar 

  49. M. Moradi, A. Aminzadeh, D. Rahmatabadi, and A. Hakimi, Experimental Investigation on Mechanical Characterization of 3D Printed PLA Produced by Fused Deposition Modeling (FDM), Mater. Res. Express, 2021 https://doi.org/10.1088/2053-1591/abe8f3

    Article  Google Scholar 

  50. C.G. Amza, A. Zapciu, G. Constantin, F. Baciu, and M.I. Vasile, Enhancing Mechanical Properties of Polymer 3D Printed Parts, Polymers (Basel), 2021, 13(4), p 1–18. https://doi.org/10.3390/polym13040562

    Article  CAS  Google Scholar 

  51. J.R.C. Dizon, A.H. Espera, Q. Chen, and R.C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf., 2018, 20, p 44–67. https://doi.org/10.1016/j.addma.2017.12.002

    Article  CAS  Google Scholar 

  52. J.M. Mercado-Colmenero et al., Mechanical characterization of the Plastic Material GF-PA6 Manufactured Using FDM Technology for a Compression Uniaxial Stress Field Via an Experimental and Numerical Analysis, Polymers (Basel), 2020 https://doi.org/10.3390/polym12010246

    Article  Google Scholar 

  53. I.P. Ehi, O.K. Ukoba, A.K. Ogunkoya, B.E. AttahDaniel, and S.O.O. Olusunle, Development of 3-Point Flexural Test Fixtures, Development, 2014, 5(1), p 56–59.

    Google Scholar 

  54. Y. Hindieh, Flexural Analysis of 3D Printed Members, South Dakota State University, Brookings, 2018.

    Google Scholar 

  55. B.S. Almir, N. Santos, and C.L. Lebre, Flexural Stiffness Characterization of Fiber Reinforced Plastic (FRP) Postured Beams, Compos. Struct., 2007, 81, p 274–282. https://doi.org/10.1016/j.compstruct.2006.08.016

    Article  Google Scholar 

  56. Y. Li, H. Gu, M. Pavier, and H. Coules, Compressive Behaviours of Octet-Truss Lattices, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 2020, 234(16), p 3257–3269. https://doi.org/10.1177/0954406220913586

    Article  Google Scholar 

  57. Z. Raheem, ASTM D695–15: Standard Test Method for Compressive Properties of Rigid Plastics 1 Standard Test Method for Compressive Properties of Rigid Plastics, Am. Soc. Test. Mater., 2015 https://doi.org/10.1520/D0695-15

    Article  Google Scholar 

  58. N. Khlystov, D. Lizardo, K. Matsushita and J. Zheng, Uniaxial Tension and Compression Testing of Materials. 3.032 Lab Report, p 1–19, 2013

  59. S.S. Raj, K.A. Michailovich, K. Subramanian, S. Sathiamoorthyi, and K.T. Kandasamy, Philosophy of Selecting ASTM Standards for Mechanical Characterization of Polymers and Polymer Composites, Mater. Plast., 2021, 58(3), p 247–256. https://doi.org/10.37358/MP.21.3.5523

    Article  Google Scholar 

  60. ASTM International, Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens. ASTM D1708-18. Am. Soc. Test. Mater., 2018. https://doi.org/10.1520/D1708-18

  61. M.F. Ashby, ANSYS GRANTA EDUPACK software, ANSYS, Inc., Cambridge, UK, 2020. https://www.ansys.com/materials

  62. N. Vidakis, M. Petousis, L. Tzounis, S.A. Grammatikos, E. Porfyrakis, A. Maniadi, N. Mountakis, Sustainable Additive Manufacturing: Mechanical Response of Polyethylene Terephthalate Glycol over Multiple Recycling Processes. Materials, 2021, 14, p 1162. https://doi.org/10.3390/ma14051162

  63. A.J. Sheoran and H. Kumar, Fused Deposition Modeling Process Parameters Optimization and Effect on Mechanical Properties and Part Quality: Review and Reflection on Present Research, Mater. Today Proc., 2020, 21, p 1659–1672. https://doi.org/10.1016/j.matpr.2019.11.296

    Article  Google Scholar 

  64. M.S. Srinidhi, R. Soundararajan, K.S. Satishkumar, and S. Suresh, Enhancing the FDM Infill Pattern Outcomes of Mechanical Behavior for as-Built and Annealed PETG and CFPETG Composites Parts, Mater. Today Proc., 2020, 45, p 7208–7212. https://doi.org/10.1016/j.matpr.2021.02.417

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds nor grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arize Chukwuemeka Igwe.

Ethics declarations

Conflict of interest

The authors have no financial nor non-financial interest to declare.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Ethical Approval

The authors declare that no data, test nor theory from this manuscript has been published elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igwe, A.C., Oniko, K.D. Investigation for an Alternative Material for the Development of a Clubfoot Brace to Improve Sustainability. J. of Materi Eng and Perform 33, 906–924 (2024). https://doi.org/10.1007/s11665-023-08012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08012-2

Keywords

Navigation