Skip to main content
Log in

Tribological Properties of Diamond-Like Carbon, TiAlN, and Diamond-Like Carbon/TiAlN Coatings Deposited on Carburized 18CrNi4A Steel for Heavy-Duty Aerospace Transmission Components

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To improve the wear resistance of carburized 18CrNi4A steel used in aerospace transmission components with high-impact and heavy-duty conditions, DLC, TiAlN, and DLC/TiAlN coatings were deposited on carburized 18CrNi4A steel surfaces by magnetron sputtering. The surface and cross-sectional morphologies, chemical compositions, and mechanical properties of these coatings were characterized by SEM, XRD, nanoindentation, and micro-scratch tests. The tribological properties of carburized 18CrNi4A steel and these coatings with heavy-duty conditions of dry sliding, lubricant, and grease were investigated. In addition, TiAlN coatings were deposited on spline coupling teeth, and the anti-wear performance was investigated using a self-made spline coupling test rig. The results show that these coatings have lower coefficient of friction (CoF) and wear rate than carburized 18CrNi4A steel. DLC/TiAlN coating exhibits the lowest coefficient of friction and wear rate in aerospace synthetic lubricants (Mobil Jet Oil II) and molybdenum disulfide lithium grease (RIPP 7254), providing the best tribological properties. The wear mechanism of heavy-duty conditions with dry sliding, lubricant and grease were discussed. In addition, the TiAlN-coated spline coupling exhibited better wear resistance than the general spline coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Z.H. Jiang, Z.M. Li, X.J. Tong, and Z. Li, Microstructure and Properties Study of 32Cr3MoVE Deep Nitrided Steel, Hangkong Cailiao Xuebao J. Aeronaut. Mater., 2010, 30, p 30–34. https://doi.org/10.3969/j.issn.1005-5053.2010.2.006

    Article  CAS  Google Scholar 

  2. C.K. Liu, B. Zhang, X. Chen, J.L. Ren, C.H. Tao, and Y.H. He, Research on Fatigue Damage of Ferromagnetic Material by Metal Magnetic Memory Methods, in International Conference on Manufacturing Science and Engineering (ICMSE 2009), (Zhuhai, People’s Republic of China, 2009), pp. 4501-+

  3. C.L. Shi, S.Y. Dong, B.S. Xu, and P. He, Stress Concentration Degree Affects Spontaneous Magnetic Signals of Ferromagnetic Steel Under Dynamic Tension Load, NDT E Int., 2010, 43, p 8–12. https://doi.org/10.1016/j.ndteint.2009.08.002

    Article  CAS  Google Scholar 

  4. X. Xue, J. Jia, Q. Huo, and J. Jia, Experimental Investigation and Prediction Method of Fretting Wear in Rack-Plane Spline Couplings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2021, 235, p 1025–1037. https://doi.org/10.1177/1350650120939838

    Article  Google Scholar 

  5. X.Z. Xue, S.M. Wang, J. Yu, and L.Y. Qin, Wear Characteristics of the Material Specimen and Method of Predicting Wear in Floating Spline Couplings of Aero-engine, Int. J. Aerosp. Eng., 2017 https://doi.org/10.1155/2017/1859167

    Article  Google Scholar 

  6. X.Z. Xue, S.M. Wang, and B. Li, Modification Methodology of Fretting Wear in Involute Spline, Wear, 2016, 368, p 435–444. https://doi.org/10.1016/j.wear.2016.10.015

    Article  CAS  Google Scholar 

  7. A. Erdemir and C. Donnet, Tribology of Diamond-Like Carbon Films: Recent Progress and Future Prospects, J. Phys. D Appl. Phys., 2006, 39, p R311–R327. https://doi.org/10.1088/0022-3727/39/18/r01

    Article  CAS  Google Scholar 

  8. F. Findik, Latest Progress on Tribological Properties of Industrial Materials, Mater. Des., 2014, 57, p 218–244. https://doi.org/10.1016/j.matdes.2013.12.028

    Article  CAS  Google Scholar 

  9. P.J. Kelly and R.D. Arnell, Magnetron Sputtering: A Review of Recent Developments and Applications, Vacuum, 2000, 56, p 159–172. https://doi.org/10.1016/s0042-207x(99)00189-x

    Article  CAS  Google Scholar 

  10. P.H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, Microstructural Design of Hard Coatings, Prog. Mater Sci., 2006, 51, p 1032–1114. https://doi.org/10.1016/j.pmatsci.2006.02.002

    Article  CAS  Google Scholar 

  11. S. PalDey, and S.C. Deevi, Single Layer and Multilayer Wear Resistant Coatings of (Ti, Al)N: A Review, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2003, 342, p 58–79. https://doi.org/10.1016/s0921-5093(02)00259-9

    Article  Google Scholar 

  12. N.K. Manninen, F. Ribeiro, A. Escudeiro, T. Polcar, S. Carvalho, and A. Cavaleiro, Influence of Ag Content on Mechanical and Tribological Behavior of DLC Coatings, Surf. Coat. Technol., 2013, 232, p 440–446. https://doi.org/10.1016/j.surfcoat.2013.05.048

    Article  CAS  Google Scholar 

  13. X.R. Shi, T.W. Liskiewicz, B.D. Beake, Z.M. Sun, and J. Chen, Fretting Wear Behavior of Graphite-Like Carbon Films with Bias-Graded Deposition, Appl. Surf. Sci., 2019, 494, p 929–940. https://doi.org/10.1016/j.apsusc.2019.07.265

    Article  CAS  Google Scholar 

  14. C.W. Zou, H.J. Wang, L. Feng, and S.W. Xue, Effects of Cr Concentrations on the Microstructure, Hardness, and Temperature-Dependent Tribological Properties of Cr-DLC Coatings, Appl. Surf. Sci., 2013, 286, p 137–141. https://doi.org/10.1016/j.apsusc.2013.09.036

    Article  CAS  Google Scholar 

  15. A.A. Voevodin, S.D. Walck, and J.S. Zabinski, Architecture of Multilayer Nanocomposite Coatings with Super-Hard Diamond-Like Carbon Layers for Wear Protection at High Contact Loads, Wear, 1997, 203, p 516–527. https://doi.org/10.1016/s0043-1648(96)07425-x

    Article  Google Scholar 

  16. R. Ananthakumar, B. Subramanian, A. Kobayashi, and M. Jayachandran, Electrochemical Corrosion and Materials Properties of Reactively Sputtered TiN/TiAlN Multilayer Coatings, Ceram. Int., 2012, 38, p 477–485. https://doi.org/10.1016/j.ceramint.2011.07.030

    Article  CAS  Google Scholar 

  17. Q. Luo, S. Yang, and K.E. Cooke, Hybrid HIPIMS and DC Magnetron Sputtering Deposition of TiN Coatings: Deposition Rate, Structure and Tribological Properties, Surf. Coat. Technol., 2013, 236, p 13–21. https://doi.org/10.1016/j.surfcoat.2013.07.003

    Article  CAS  Google Scholar 

  18. M. Braic, V. Braic, M. Balaceanu, G. Pavelescu, A. Vladescu, I. Tudor, A. Popescu, Z. Borsos, C. Logofatu, and C.C. Negrila, Microchemical and Mechanical Characteristics of Arc Plasma Deposited TiAlN and TiN/TiAlN Coatings, J. Optoelectron. Adv. Mater., 2005, 7, p 671–676.

    CAS  Google Scholar 

  19. O. Comakli, Influence of CrN, TiAlN Monolayers and TiAlN/CrN Multilayer Ceramic Films on Structural, Mechanical and Tribological Behavior of Beta-Type Ti45Nb Alloys, Ceram. Int., 2020, 46, p 8185–8191. https://doi.org/10.1016/j.ceramint.2019.12.046

    Article  CAS  Google Scholar 

  20. J.H. Hsieh, C. Liang, C.H. Yu, and W. Wu, Deposition and Characterization of TiAlN and Multi-layered TiN/TiAlN Coatings Using Unbalanced Magnetron Sputtering, Surf. Coat. Technol., 1998, 108, p 132–137. https://doi.org/10.1016/s0257-8972(98)00684-7

    Article  Google Scholar 

  21. K. Katahira, Y. Watanabe, H. Ohmori, and T. Kato, ELID Grinding and Tribological Characteristics of TiAlN Film, Int. J. Mach. Tools Manuf, 2002, 42, p 1307–1313. https://doi.org/10.1016/s0890-6955(02)00076-7

    Article  Google Scholar 

  22. A. Rizzo, L. Mirenghi, M. Massaro, U. Galietti, L. Capodieci, R. Terzi, L. Tapfer, and D. Valerini, Improved Properties of TiAlN Coatings Through the Multilayer Structure, Surf. Coat. Technol., 2013, 235, p 475–483. https://doi.org/10.1016/j.surfcoat.2013.08.006

    Article  CAS  Google Scholar 

  23. M.W. Bai, L.Q. Yang, J.Y. Li, L. Luo, S.K. Sun, and B. Inkson, Mechanical and Tribological Properties of Si and W Doped Diamond Like Carbon (DLC) Under Dry Reciprocating Sliding Conditions, Wear, 2021 https://doi.org/10.1016/j.wear.2021.204046

    Article  Google Scholar 

  24. J. Du, T.M. Hao, X. Zhang, G.S. Su, P.R. Zhang, Y.J. Sun, J.J. Zhang, and C.H. Xu, Finite Element Investigation of Cutting Performance of Cr/W-DLC/DLC Composite Coated Cutting Tool, Int. J. Adv. Manuf. Technol., 2021 https://doi.org/10.1007/s00170-021-08093-0

    Article  Google Scholar 

  25. P. Wongpanya, P. Silawong, and P. Photongkam, Nanomechanical Properties and Thermal Stability of Al-N-co-Doped DLC Films Prepared by Filtered Cathodic Vacuum Arc Deposition, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127655

    Article  Google Scholar 

  26. W.J. Yu, W.J. Huang, J.J. Wang, Y.Y. Su, Q. Long, L.Q. Wang, and L.F. Zhu, High-Temperature Tribological Performance of the Si-Gradually Doped Diamond-Like Carbon Film, Vacuum, 2021 https://doi.org/10.1016/j.vacuum.2021.110387

    Article  Google Scholar 

  27. O. Sharifahmadian and F. Mahboubi, A Comparative Study of Microstructural and Tribological Properties of N-DLC/DLC Double Layer and Single Layer Coatings Deposited by DC-Pulsed PACVD Process, Ceram. Int., 2019, 45, p 7736–7742. https://doi.org/10.1016/j.ceramint.2019.01.076

    Article  CAS  Google Scholar 

  28. X.D. Sui, J.Y. Liu, S.T. Zhang, J. Yang, and J.Y. Hao, Microstructure, Mechanical and Tribological Characterization of CrN/DLC/Cr-DLC Multilayer Coating with Improved Adhesive Wear Resistance, Appl. Surf. Sci., 2018, 439, p 24–32. https://doi.org/10.1016/j.apsusc.2017.12.266

    Article  CAS  Google Scholar 

  29. P.V. Badiger, V. Desai, M.R. Ramesh, S. Joladarashi, and H. Gourkar, Tribological Behaviour of Monolayer and Multilayer Ti-Based Thin Solid Films Deposited on Alloy Steel, Mater. Res. Express, 2019 https://doi.org/10.1088/2053-1591/aaef6d

    Article  Google Scholar 

  30. H. Elmkhah, F. Mahboubi, A. Abdollah-Zadeh, and A.R.S. Rouhaghdam, A New Approach to Improve the Surface Properties of H13 Steel for Metal Forming Applications by Applying the TiAlN Multi-layer Coating, J. Manuf. Process., 2018, 32, p 873–877. https://doi.org/10.1016/j.jmapro.2018.04.010

    Article  Google Scholar 

  31. D.W. Kim and K.W. Kim, Effects of Sliding Velocity and Normal Load on Friction and Wear Characteristics of Multi-layered Diamond-Like Carbon (DLC) Coating Prepared by Reactive Sputtering, Wear, 2013, 297, p 722–730. https://doi.org/10.1016/j.wear.2012.10.009

    Article  CAS  Google Scholar 

  32. D.W. Kim and K.W. Kim, Effects of Sliding Velocity and Ambient Temperature on the Friction and Wear of a Boundary-Lubricated Multi-layered DLC Coating, Wear, 2014, 315, p 95–102. https://doi.org/10.1016/j.wear.2014.04.002

    Article  CAS  Google Scholar 

  33. A. Krella, Resistance of PVD Coatings to Erosive and Wear Processes: A Review, Coatings, 2020 https://doi.org/10.3390/coatings10100921

    Article  Google Scholar 

  34. S.J. McMaster, T.W. Liskiewicz, A. Neville, and B. Beake, Probing Fatigue Resistance in Multi-layer DLC coatings by Micro- and Nano-impact: Correlation to Erosion Tests, Surf. Coat. Technol., 2020 https://doi.org/10.1016/j.surfcoat.2020.126319

    Article  Google Scholar 

  35. H.D. Zhang, F.S. Mei, Y. Yu, X.L. Lin, and J.X. Gao, Improvement on the Mechanical, Tribological Properties and Cutting Performance of AlTiN-Based Coatings by Compositional and Structural Design, Surf. Coat. Technol., 2021 https://doi.org/10.1016/j.surfcoat.2021.127503

    Article  Google Scholar 

  36. M.H. Sulaiman, R.N. Farahana, K. Bienk, C.V. Nielsen, and N. Bay, Effects of DLC/TiAlN-Coated Die on Friction and Wear in Sheet-Metal Forming Under Dry and Oil-Lubricated Conditions: Experimental and Numerical Studies, Wear, 2019 https://doi.org/10.1016/j.wear.2019.203040

    Article  Google Scholar 

  37. L. Xiao, Y.Q. Xu, X.W. Sun, H. Xu, and L. Zhang, Experimental Investigation on the Effect of Misalignment on the Wear Failure for Spline Couplings, Eng. Fail. Anal., 2022 https://doi.org/10.1016/j.engfailanal.2021.105755

    Article  Google Scholar 

  38. L.L. Liu, W. Tani, L. Zhou, Z.C. Wu, Q.D. Ruan, X.Y. Li, A.M. Qasirn, S.H. Cui, T.J. Li, R.K.Y. Fu, X.B. Tian, Z.Z. Wu, and P.K. Chu, Comparative Study of TiAlN Coatings Deposited by Different High-Ionization Physical Vapor Deposition Techniques, Ceram. Int., 2020, 46, p 10814–10819. https://doi.org/10.1016/j.ceramint.2020.01.092

    Article  CAS  Google Scholar 

  39. Q.Z. Wang, F. Zhou, X.N. Wang, K.M. Chen, M.L. Wang, T. Qian, and Y.X. Li, Comparison of Tribological Properties of CrN, TiCN and TiAlN Coatings Sliding Against SiC Balls in Water, Appl. Surf. Sci., 2011, 257, p 7813–7820. https://doi.org/10.1016/j.apsusc.2011.04.035

    Article  CAS  Google Scholar 

  40. Z.Q. Li, H.H. Zhang, W.F. He, L. Xu, G.A. Zhang, X.F. Nie, B. Liao, and Y.H. Li, Tribological Performance of GLC, WC/GLC and TiN Films on the Carburized M50NiL Steel, Surf. Coat. Technol., 2019, 361, p 1–8. https://doi.org/10.1016/j.surfcoat.2019.01.038

    Article  CAS  Google Scholar 

  41. I. Gomez, A. Claver, J.A. Santiago, I. Fernandez, J.F. Palacio, C. Diaz, S. Mandl, and J.A. Garcia, Improved Adhesion of the DLC Coating Using HiPIMS with Positive Pulses and Plasma Immersion Pretreatment, Coatings, 2021 https://doi.org/10.3390/coatings11091070

    Article  Google Scholar 

  42. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19, p 3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  43. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic-modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583. https://doi.org/10.1557/jmr.1992.1564

    Article  CAS  Google Scholar 

  44. G.S. Fox-Rabinovich, B.D. Beake, J.L. Endrino, S.C. Veldhuis, R. Parkinson, L.S. Shuster, and M.S. Migranov, Effect of Mechanical Properties Measured at Room and Elevated Temperatures on the Wear Resistance of Cutting Tools with TiAlN and AlCrN Coatings, Surf. Coat. Technol., 2006, 200, p 5738–5742. https://doi.org/10.1016/j.surfcoat.2005.08.132

    Article  CAS  Google Scholar 

  45. K. De Moerlooze and F. Albender, On the Relationship Between Normal Load and Friction Force in Pre-sliding Frictional Contacts. Part 2: Experimental Investigation, Wear, 2010, 269, p 183–189. https://doi.org/10.1016/j.wear.2010.02.008

    Article  CAS  Google Scholar 

  46. B. Selcuk, R. Ipek, and M.B. Karamis, A Study on Friction and Wear Behaviour of Carburized, Carbonitrided and Borided AISI 1020 and 5115 Steels, J. Mater. Process. Technol., 2003, 141, p 189–196. https://doi.org/10.1016/s0924-0136(02)01038-5

    Article  CAS  Google Scholar 

  47. C.C. Viafara and A. Sinatora, Unlubricated Sliding Friction and Wear Of Steels: An Evaluation of the Mechanism Responsible for the T-1 Wear Regime Transition, Wear, 2011, 271, p 1689–1700. https://doi.org/10.1016/j.wear.2010.12.085

    Article  CAS  Google Scholar 

  48. W.H. Kao, Microstructure, Adhesion and Tribological Properties of W-C : H-x% Coatings Deposited on M2 and WC Substrates, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2006, 432, p 253–260. https://doi.org/10.1016/j.msea.2006.06.008

    Article  CAS  Google Scholar 

  49. Y.M. Li, Q.B. Yue, H.Y. Li, and H.B. He, Friction and Wear Characteristics of 20Cr Steel Substrate and TiAlN Coating under Different Lubrication Conditions, Int. J. Precis. Eng. Manuf., 2018, 19, p 1521–1528. https://doi.org/10.1007/s12541-018-0179-8

    Article  Google Scholar 

  50. W.Y.H. Liew, Low-Speed Milling of Stainless Steel with TiAlN Single-layer and TiAlN/AlCrN Nano-multilayer Coated Carbide Tools Under Different Lubrication Conditions, Wear, 2010, 269, p 617–631. https://doi.org/10.1016/j.wear.2010.06.012

    Article  CAS  Google Scholar 

  51. R. Peng, P.Y. Zhang, Z.X. Tian, D.P. Zhu, C. Chen, B.F. Yin, and X.J. Hua, Effect of Textured DLC Coatings on Tribological Properties of Titanium Alloy Under Grease Lubrication, Mater. Res. Express, 2020 https://doi.org/10.1088/2053-1591/ab9ced

    Article  Google Scholar 

  52. Y.Y. Xiao, W.K. Shi, J. Luo, and Y.J. Liao, The Tribological Performance of TiN, WC/C and DLC Coatings Measured by the Four-Ball Test, Ceram. Int., 2014, 40, p 6919–6925. https://doi.org/10.1016/j.ceramint.2013.12.015

    Article  CAS  Google Scholar 

  53. W.H. Zhuang, X.Q. Fan, W. Li, H. Li, L. Zhang, J.F. Peng, Z.B. Cai, J.L. Mo, G.G. Zhang, and M.H. Zhu, Comparing Space Adaptability of Diamond-Like Carbon and Molybdenum Disulfide Films Toward Synergistic Lubrication, Carbon, 2018, 134, p 163–173. https://doi.org/10.1016/j.carbon.2018.03.059

    Article  CAS  Google Scholar 

  54. M. Heitkemper, A. Fischer, C. Bohne, and A. Pyzalla, Wear Mechanisms of Laser-Hardened Martensitic High-Nitrogen-Steels Under Sliding Wear, Wear, 2001, 250, p 477–484. https://doi.org/10.1016/s0043-1648(01)00659-7

    Article  Google Scholar 

  55. K. Valtonen, N. Ojala, O. Haiko, and V.T. Kuokkala, Comparison of Various High-Stress Wear Conditions and Wear Performance of Martensitic Steels, Wear, 2019, 426, p 3–13. https://doi.org/10.1016/j.wear.2018.12.006

    Article  CAS  Google Scholar 

  56. S.Q. Wang, L. Wang, Y.T. Zhao, Y. Sun, and Z.R. Yang, Mild-to-Severe Wear Transition and Transition Region of Oxidative Wear in Steels, Wear, 2013, 306, p 311–320. https://doi.org/10.1016/j.wear.2012.08.017

    Article  CAS  Google Scholar 

  57. J.Y. Mao, G.Y. Chen, J. Zhao, Y.Y. He, and J.B. Luo, An Investigation on the Tribological Behaviors of Steel/Copper and Steel/Steel Friction Pairs Via Lubrication with a Graphene Additive, Friction, 2021, 9, p 228–238. https://doi.org/10.1007/s40544-019-0327-x

    Article  CAS  Google Scholar 

  58. T.H. Zhang and Y. Huan, Nanoindentation and Nanoscratch Behaviors of DLC Coatings on Different Steel Substrates, Compos. Sci. Technol., 2005, 65, p 1409–1413. https://doi.org/10.1016/j.compscitech.2004.12.011

    Article  CAS  Google Scholar 

  59. Z.F. Zhou, K.Y. Li, I. Bello, C.S. Lee, and S.T. Lee, Study of Tribological Performance of ECR-CVD Diamond-Like Carbon Coatings on Steel Substrates Part 2. The Analysis of Wear Mechanism, Wear, 2005, 258, p 1589–1599. https://doi.org/10.1016/j.wear.2004.10.005

    Article  CAS  Google Scholar 

  60. A.A. Voevodin, R. Bantle, and A. Matthews, Dynamic Impact-Wear of TiCxNy and Ti-DLC Composite Coatings, Wear, 1995, 185, p 151–157. https://doi.org/10.1016/0043-1648(95)06603-9

    Article  CAS  Google Scholar 

  61. P. Xu, Y. Wang, X.Q. Cao, X.F. Nie, W. Yue, and G.G. Zhang, The Tribological Properties of DLC/SiC and DLC/Si3N4 Under Different Relative Humidity: The Transition from Abrasive Wear to Tribo-Chemical Reaction, Ceram. Int., 2021, 47, p 3901–3910. https://doi.org/10.1016/j.ceramint.2020.09.252

    Article  CAS  Google Scholar 

  62. B.D. Beake, J.L. Endrino, C. Kimpton, G.S. Fox-Rabinovich, and S.C. Veldhuis, Elevated Temperature Repetitive Micro-Scratch Testing of AlCrN, TiAlN and AlTiN PVD Coatings, Int. J. Refract Metal Hard Mater., 2017, 69, p 215–226. https://doi.org/10.1016/j.ijrmhm.2017.08.017

    Article  CAS  Google Scholar 

  63. E. Contreras Romero, A. Hurtado Macias, J. Mendez Nonell, O. Solis Canto, and M. Gomez Botero, Mechanical and Tribological Properties of Nanostructured TiAlN/TaN Coatings Deposited by DC Magnetron Sputtering, Surf. Coat. Technol., 2019 https://doi.org/10.1016/j.surfcoat.2019.124941

    Article  Google Scholar 

  64. A.H. Liu, J.X. Deng, H.B. Cui, Y.Y. Chen, and J. Zhao, Friction and Wear Properties of TiN, TiAIN, AlTiN and CrAlN PVD Nitride Coatings, Int. J. Refract Metal Hard Mater., 2012, 31, p 82–88. https://doi.org/10.1016/j.ijrmhm.2011.09.010

    Article  CAS  Google Scholar 

  65. P.V. Moghaddam, B. Prakash, E. Vuorinen, M. Fallqvist, J.M. Andersson, and J. Hardell, High Temperature Tribology of TiAlN PVD Coating Sliding Against 316L Stainless Steel and Carbide-Free Bainitic Steel, Tribol. Int., 2021 https://doi.org/10.1016/j.triboint.2020.106847

    Article  Google Scholar 

  66. B. Vengudusamy, J.H. Green, G.D. Lamb, and H.A. Spikes, Tribological Properties of Tribofilms Formed from ZDDP in DLC/DLC and DLC/Steel Contacts, Tribol. Int., 2011, 44, p 165–174. https://doi.org/10.1016/j.triboint.2010.10.023

    Article  CAS  Google Scholar 

  67. B. Vengudusamy, J.H. Green, G.D. Lamb, and H.A. Spikes, Behaviour of MoDTC in DLC/DLC and DLC/Steel Contacts, Tribol. Int., 2012, 54, p 68–76. https://doi.org/10.1016/j.triboint.2012.04.028

    Article  CAS  Google Scholar 

  68. R. Zahid, H.H. Masjuki, M. Varman, R.A. Mufti, M.A. Kalam, and M. Gulzar, Effect of Lubricant Formulations on the Tribological Performance of Self-mated Doped DLC Contacts: A Review, Tribol. Lett., 2015 https://doi.org/10.1007/s11249-015-0506-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the National Key R&D Program of China (Grant No. 2020YFB2010200) and the Integration of Industry, Education and Research of Aero Engine (Group) Corporation of China (Grant No. HFZL2019CXY004-2). The authors would like to acknowledge the editors and the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingqiang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Xu, Y., Chen, Z. et al. Tribological Properties of Diamond-Like Carbon, TiAlN, and Diamond-Like Carbon/TiAlN Coatings Deposited on Carburized 18CrNi4A Steel for Heavy-Duty Aerospace Transmission Components. J. of Materi Eng and Perform 33, 601–617 (2024). https://doi.org/10.1007/s11665-023-07996-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07996-1

Keywords

Navigation