Skip to main content
Log in

Microstructural, Mechanical and Corrosion Characterizations of Borided Cast Irons Formed by a Recycled Boriding Agent

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, a powder-pack boriding process using a recycled boriding agent without adding fresh powder was carried out on lamellar, spheroidal graphite, and high chromium cast irons at 1223 K for 4 h. Characterization was carried out by optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction and a micro-Vickers hardness tester. The Daimler-Benz Rockwell-C and scratch tests were applied for adhesion assessment. The boriding led mainly to the formation of boride layers with hard nature (FexBy and CrxBy) phases, 47-97 μm thickness and 1476–2149 HV0.1 hardness, depending on the type of cast iron substrate. Moreover, the results showed a better adhesion of the layer for the borided lamellar and spheroidal graphite compared to the borided high chromium iron. By using OCP and Tafel polarization to assess the samples' corrosion resistance in 3.5% NaCl solution, it was revealed that following boriding, the corrosion potential (Ecorr) shifted in favor of the noble direction. This boriding may contribute to improving the microstructure, hardness, adhesion, and corrosion resistance of cast iron surfaces in a more economical way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.A.P.-S. Elorz, D.F. González, and L.F. Verdeja, Physical metallurgy of cast irons, Springer, New York, 2018. https://doi.org/10.1007/978-3-319-97313-5

    Book  Google Scholar 

  2. U. Sen, S. Sen, and F. Yilmaz, Effect of Copper on Boride Layer of Boronized Ductile Cast Irons, Vacuum, 2003, 72(2), p 199–204.

    CAS  Google Scholar 

  3. R. İpek, B. Selçuk, M.B. Karamiş, V. Kuzucu, and A. Yücel, An evaluation of the possibilities of using borided GG25 cast iron instead of chilled GG25 cast iron (surface properties), J. Mater. Process. Technol., 2000, 105(1), p 73–79.

    Google Scholar 

  4. A.-S. Jain, H. Chang, X. Tang, B. Hinckley, and M.-X. Zhang, Refinement of primary carbides in hypereutectic high-chromium cast irons: a review, J. Mater. Sci., 2021, 56(2), p 999–1038.

    CAS  Google Scholar 

  5. A. Roy and I. Manna, Laser Surface Engineering to Improve Wear Resistance of Austempered Ductile Iron, Mater. Sci. Eng. A, 2001, 297(1), p 85–93.

    Google Scholar 

  6. Y. Dong, T. Bell, X. Li, and H. Dong, A Novel Double-Stage Pulsed Plasma Bright Nitriding of Spheroidal Graphite (SG) Cast Iron, Vacuum, 2018, 153, p 217–220.

    CAS  Google Scholar 

  7. Y. Liu, Y. Sun, W. Zhang, and X. Du, Effect of QPQ Nitriding Parameters on Properties of Pearlite Ductile Cast Iron, Int. J. Metalcast., 2020, 14(2), p 556–563.

    CAS  Google Scholar 

  8. C. Zimmerman, Boriding (Boronizing) of Metals, Steel Heat Treat. Fundamentals Process., 2013, 4, p 709–724.

    Google Scholar 

  9. T.S. Eyre, Effect of Boronising on Friction and Wear of Ferrous Metals, Wear, 1975, 34(3), p 383–397.

    CAS  Google Scholar 

  10. I.E. Campos-Silva and G.A. Rodríguez-Castro, 18-Boriding to Improve the Mechanical Properties and Corrosion Resistance of Steels, Thermochemical Surface Engineering of Steelsed. E.J. Mittemeijer, M.A.J. Somers Ed., Woodhead Publishing, Sawston, Cambridge, 2015, p 651–702. https://doi.org/10.1533/9780857096524.5.651

    Chapter  Google Scholar 

  11. P. Dearnley and T. Bell, Engineering the Surface With Boron Based Materials, Surf. Eng., 1985, 1(3), p 203–217.

    CAS  Google Scholar 

  12. K.-H. Habig, Wear Protection of Steels by Boriding, Vanadizing, Nitriding, Carburising, and Hardening, Mater. Des., 1980, 2(2), p 83–92.

    CAS  Google Scholar 

  13. V. Jain and G. Sundararajan, Influence of the Pack Thickness of the Boronizing Mixture on the Boriding of Steel, Surf. Coat. Technol., 2002, 149(1), p 21–26.

    CAS  Google Scholar 

  14. İ Türkmen, E. Yalamaç, and M. Keddam, Investigation of Tribological Behaviour and Diffusion Model of Fe2B Layer Formed by Pack-Boriding on SAE 1020 Steel, Surf. Coat. Technol., 2019, 377, p 124888.

    Google Scholar 

  15. Y. Kayali, Y. Yalcin, and Ş Taktak, Adhesion and Wear Properties of Boro-Tempered Ductile Iron, Mater. Des., 2011, 32(8–9), p 4295–4303.

    CAS  Google Scholar 

  16. P. Asthana, H. Liang, M. Usta, and A.H. Ucisik, Wear and Surface Characterization of Boronized Pure Iron, J. Tribol., 2006, 129(1), p 1–10.

    Google Scholar 

  17. E.J. Hernández-Ramírez, A. Guevara-Morales, U. Figueroa-López, and I. Campos-Silva, Wear Resistance of Diffusion Annealed Borided AISI 1018 Steel, Mater. Lett., 2020, 277, p 128297.

    Google Scholar 

  18. R.C. Morón, I. Hernández-Onofre, A.D. Contla-Pacheco, D. Bravo-Bárcenas, and I. Campos-Silva, Friction and Reciprocating Wear Behavior of Borided AISI H13 Steel Under Dry and Lubricated Conditions, J. Mater. Eng. Perform., 2020, 29(7), p 4529–4540.

    Google Scholar 

  19. I. Campos-Silva, M. Ortiz-Domínguez, C. Tapia-Quintero, G. Rodríguez-Castro, M.Y. Jiménez-Reyes, and E. Chávez-Gutiérrez, Kinetics and Boron Diffusion in the FeB/Fe2B Layers Formed at the Surface of Borided High-Alloy Steel, J. Mater. Eng. Perform., 2012, 21(8), p 1714–1723.

    CAS  Google Scholar 

  20. A.P. Krelling, J.C.G. Milan, and C.E. da Costa, Tribological Behaviour of Borided H13 Steel with Different Boriding Agents, Surf. Eng., 2015, 31(8), p 581–587.

    CAS  Google Scholar 

  21. M. Kul, K.O. Oskay, A. Temizkan, B. Karaca, L.C. Kumruoğlu, and B. Topçu, Effect of Boronizing Composition on Boride Layer Of Boronized GGG-60 Ductile Cast Iron, Vacuum, 2016, 126, p 80–83.

    CAS  Google Scholar 

  22. M. Çetin, A. Günen, M. Kalkandelen, and M.S. Karakaş, Microstructural, Wear and Corrosion Characteristics of Boronized AISI 904L Superaustenitic Stainless Steel, Vacuum, 2021, 187, p 110145.

    Google Scholar 

  23. O. Allaoui, N. Bouaouadja, and G. Saindernan, Characterization of Boronized Layers on a XC38 Steel, Surf. Coat. Technol., 2006, 201(6), p 3475–3482.

    CAS  Google Scholar 

  24. T. Turkoglu and I. Ay, Investigation of Mechanical, Kinetic and Corrosion Properties of Borided AISI 304, AISI 420 and AISI 430, Surf. Eng., 2021, 37(8), p 1020–1031.

    CAS  Google Scholar 

  25. I. Campos-Silva, S. Bernabé-Molina, D. Bravo-Bárcenas, J. Martínez-Trinidad, G. Rodríguez-Castro, and A. Meneses-Amador, Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing, J. Mater. Eng. Perform., 2016, 25(9), p 3852–3862.

    CAS  Google Scholar 

  26. I. Campos-Silva, M. Flores-Jiménez, G. Rodríguez-Castro, E. Hernández-Sánchez, J. Martínez-Trinidad, and R. Tadeo-Rosas, Improved Fracture Toughness of Boride Coating Developed with a Diffusion Annealing Process, Surf. Coat. Technol., 2013, 237, p 429–439.

    CAS  Google Scholar 

  27. I. Campos-Silva, M. Ortiz-Domínguez, M. Keddam, N. López-Perrusquia, A. Carmona-Vargas, and M. Elías-Espinosa, Kinetics of the Formation of Fe2B Layers in Gray Cast Iron: Effects of Boron Concentration and Boride Incubation Time, Appl. Surf. Sci., 2009, 255(22), p 9290–9295.

    CAS  Google Scholar 

  28. M. Keddam and R. Chegroune, A Model for Studying the Kinetics of the Formation of Fe2B Boride Layers at the Surface of a Gray Cast Iron, Appl. Surf. Sci., 2010, 256(16), p 5025–5030.

    CAS  Google Scholar 

  29. S. Sahin and C. Meric, Investigation of the Effect of Boronizing on Cast Irons, Mater. Res. Bull., 2002, 37(5), p 971–979.

    CAS  Google Scholar 

  30. Z. Chaima, M. Keddam, B. Bouarour, A. Piasecki, A. Miklaszewski, and M. Kulka, Characterization and Boronizing Kinetics of EN-GJL-250 Lamellar Gray Cast Iron, Ann. Chim. Sci. Mat., 2020, 44, p 23–28.

    Google Scholar 

  31. M. Ortiz-Dominguez, M. Flores-Renteria, M. Keddam, M.C. Espinosa, O. Damian-Mejia, J. Aldana-González, J. Zuno, S. Medina, and J. Gonzalez-Reyes, Simulation of Growth Kinetics of Fe2B Layers Formed on Gray Cast Iron During the Powder-Pack Boriding, Mater. Technol., 2014, 48, p 905–916.

    Google Scholar 

  32. N. López Perrusquia, M. Antonio Doñu Ruiz, E.Y. Vargas Oliva, and V. Cortez Suarez, Diffusion of Hard Coatings on Ductile Cast Iron, MRS Online Proc Library, 2012, 1481(1), p 89–96.

    Google Scholar 

  33. O. Azouani, M. Keddam, O. Allaoui, and A. Sehisseh, Characterization of Boride Coatings on a Ductile Cast Iron, Prot. Met. Phys. Chem. Surf., 2017, 53(2), p 306–311.

    CAS  Google Scholar 

  34. C. Li, B. Shen, G. Li, and C. Yang, Effect of Boronizing Temperature and Time on Microstructure and Abrasion Wear Resistance of Cr12Mn2V2 High Chromium Cast Iron, Surf. Coat. Technol., 2008, 202(24), p 5882–5886.

    CAS  Google Scholar 

  35. M. Cakir and İH. Akcay, Effects of Borided Cylinder Liner on Engine Performance in a Firing Diesel Engine, Arab. J. Sci. Eng., 2015, 40(11), p 3329–3335.

    Google Scholar 

  36. S. Taktak, Some Mechanical Properties of Borided AISI H13 and 304 Steels, Mater. Des., 2007, 28(6), p 1836–1843.

    CAS  Google Scholar 

  37. S. Taktak and S. Tasgetiren, Identification of Delamination Failure of Boride Layer on Common Cr-Based Steels, J. Mater. Eng. Perform., 2006, 15(5), p 570–574.

    CAS  Google Scholar 

  38. D. Mu and B.-L. Shen, The Kinetics and Dry-Sliding Wear Properties of Boronized Gray Cast Iron, Adv. Mater. Sci. Eng., 2013. https://doi.org/10.1155/2013/751971

    Article  Google Scholar 

  39. H. Okamoto, B-Fe (boron-iron), J. Phase Equilibria Diff., 2004, 25(3), p 297–298.

    CAS  Google Scholar 

  40. J.-X. Hou, J. Fan, H.-J. Yang, Z. Wang, and J.-W. Qiao, Deformation Behavior and Plastic Instability of Boronized Al0.25CoCrFeNi High-Entropy Alloys, Inter. J. Min. Metall. Mater., 2020, 27(10), p 1363.

    CAS  Google Scholar 

  41. E. Kondakci and N. Solak, The Effect of Microstructure on Nitriding Mechanism of Cast Iron, Int. J. Metalcast., 2020, 14(4), p 1033–1040.

    CAS  Google Scholar 

  42. U. Sen, S. Sen, and F. Yilmaz, An Evaluation of Some Properties of Borides Deposited on Boronized Ductile Iron, J. Mater. Process. Technol., 2004, 148(1), p 1–7.

    CAS  Google Scholar 

  43. Y. Kayali, A. Buyuksagis, and Y. Yalçin, Corrosion Behavior of Boro-Tempered Ductile Iron, Prot. Met. Phys. Chem. Surf., 2010, 46, p 345–349.

    CAS  Google Scholar 

  44. P. Goeuriot, R. Fillit, F. Thevenot, J.H. Driver, and H. Bruyas, The Influence of Alloying Element Additions on the Boriding of Steels, Mater. Sci. Eng., 1982, 55(1), p 9–19.

    CAS  Google Scholar 

  45. Y. Yalcin and A. Yazici, The Effect of Boro-Tempering Heat Treatment on the Properties of Ductile Cast Iron, Kvoove Mater., 2007, 45(1), p 51.

    CAS  Google Scholar 

  46. G. Palombarini and M. Carbucicchio, On the Morphology of Thermochemically Produced Fe2B/Fe Interfaces, J. Mater. Sci. Lett., 1984, 3(9), p 791–794.

    CAS  Google Scholar 

  47. C. Martini, G. Palombarini, and M. Carbucicchio, Mechanism of Thermochemical Growth of Iron Borides on Iron, J. Mater. Sci., 2004, 39(3), p 933–937.

    CAS  Google Scholar 

  48. H. Lu, T. Li, J. Cui, Q. Li, and D.Y. Li, Improvement in Erosion-Corrosion Resistance of High-Chromium Cast Irons by Trace Boron, Wear, 2017, 376–377, p 578–586.

    Google Scholar 

  49. N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143–144, p 481–485.

    Google Scholar 

  50. G. Rodriguez, L. Jiménez-Tinoco, J. Méndez-Méndez, I. Arzate-Vázquez, A. Meneses-Amador, H. Martínez Gutiérrez, and I. Campos-Silva, Damage Mechanisms in AISI 304 Borided Steel: Scratch and Daimler-Benz Adhesion Tests, Mater. Res., 2015, 18, p 1346–1353.

    Google Scholar 

  51. S.J. Bull, Failure Mode Maps in the Thin Film Scratch Adhesion Test, Tribol. Int., 1997, 30(7), p 491–498.

    CAS  Google Scholar 

  52. H.E. Hintermann, Adhesion, Friction, and Wear of Thin Hard Coatings, Wear, 1984, 100(1), p 381–397.

    CAS  Google Scholar 

  53. A. Günen, Properties and Corrosion Resistance of Borided AISI H11 Tool Steel, J. Eng. Mater. Technol., 2019, 142, p 1–19.

    Google Scholar 

  54. J. Jiang, Y. Wang, Q. Zhong, Q. Zhou, and L. Zhang, Preparation of Fe2B Boride Coating on Low-Carbon Steel Surfaces and Its Evaluation of Hardness and Corrosion Resistance, Surf. Coat. Technol., 2011, 206(2), p 473–478.

    CAS  Google Scholar 

  55. P. Süry, Corrosion Behaviour of Borided and Nitrided Steels in Aqueous Media, Br. Corros. J., 1978, 13(1), p 31–38.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Khelfaoui Youcef for his assistance in the XRD, Dr. LEMBOUB Samia and Mr. METIRI Mustapha for hardness and SEM testing, all the staff of Materials Science and Engineering at the National School of Mining and Metallurgy in Annaba-Algeria for their technical and scientific support, and the University of Siegen, Germany, for the SEM-EDX analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarig Tamam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamam, T., Touhami, M.Z., Zahzouh, M. et al. Microstructural, Mechanical and Corrosion Characterizations of Borided Cast Irons Formed by a Recycled Boriding Agent. J. of Materi Eng and Perform 33, 194–212 (2024). https://doi.org/10.1007/s11665-023-07978-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07978-3

Keywords

Navigation