Skip to main content

Advertisement

Log in

Failure Assessment and High-Temperature Corrosion Behavior of Inconel 625 Welds in Simulated K2SO4 + 60% NaCl Boiler Environment

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This research investigates the hot corrosion behavior of Inconel 625 similar joints welded using pulsed current gas tungsten arc welding (PCGTAW). Specific emphasis has been given to the microstructural changes at the fusion zone and weld interface while employing two different Ni-Mo-rich fillers (ERNiCrCoMo-1 and ERNiCrMo-4). The microstructure of the weldments was evaluated using scanning electron microscopy (SEM) and optical microscopy (OM) techniques. The weld joints employed with ERNiCrMo-4 filler showed slightly higher strength than that of ERNiCrCoMo-1, and the fractures were found on the base metal regions. The performance of the alloy 625 bi-metallic joints has been ascertained by exposing both cyclic molten salt K2SO4 + 60% NaCl and an air oxidation environment at 700 °C. A thermogravimetric plot was employed to determine the weldment kinetics of corrosion. SEM/EDS systematically examined the oxide scales formed on the weldments, and x-ray diffraction (XRD) was used to identify the phases of the corrosion products. The test results revealed that the corroded samples in the salt condition experienced severe corrosion attacks as compared to air conditions by sulfidation and chlorination. Based on the specific outcomes of this study, ERNiCrMo-4 filler is recommended for joining these similar combinations of welds and it imparts better corrosion resistance at elevated temperatures in simulated boiler environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. V. Shankar, S.R.K. Bhanu, and S.L. Mannan, Microstructure and Mechanical Properties of Inconel 625 Superalloy, J. Nucl. Mater., 2001, 288, p 222–232. https://doi.org/10.1016/S0022-3115(00)00723-6

    Article  CAS  Google Scholar 

  2. C.T. Sims, N.S. Stoloff, W.C. Hagel, Wiley Interscience, New York, 1987

  3. J.F. Radavich and A. Fort, Superalloys 718, 625, 706 and Various Derivatives. E.A. Loria Ed., TMS, Warrendale, PA, 1994, p 635

    Chapter  Google Scholar 

  4. M.A. Shaikh, M. Ahmad, K.A. Shoaib, J.I. Akhter, and M. Iqbal, Precipitation Hardening in Inconel 625, Mater. Sci. Technol., 2000, 16, p 129–132. https://doi.org/10.1179/026708300101507613

    Article  CAS  Google Scholar 

  5. J. Gordine, Some Problems in Welding Inconel 718, Weld J., 1971, 50, p 480

    Google Scholar 

  6. K. Devendranath Ramkumar, S.M. Sachet, A. Kumar, K. Ankita, and G. Supriyo, Effect of Grain Boundary Precipitation on the Mechanical Integrity of EBW Joints of Inconel 625, Mater. Sci. Eng. A., 2021, 808, p 140926. https://doi.org/10.1016/j.msea.2021.140926

    Article  CAS  Google Scholar 

  7. S. Sujai and K. Devendranath Ramkumar, Direct Ageing Response on the Microstructure and Mechanical Properties of Electron Beam Welds of Ni-Cr-Fe Alloy Used in Vacuum Insulated Tubing, J. Manuf. Process., 2020, 54, p 359–373. https://doi.org/10.1016/j.jmapro.2020.03.027

    Article  Google Scholar 

  8. M. Sathishkumar and M. Manikandan, Preclusion of Carbide Precipitates in the Hastelloy X Weldment Using the Current Pulsing Technique, J. Manuf. Process., 2019, 45, p 9–21. https://doi.org/10.1016/j.jmapro.2019.06.027

    Article  Google Scholar 

  9. Y. Balram, R.G. Venkat, M. Sandeep, and V.T. Vishnu, Thermal Field and Residual Stress Analyses of Similar and Dissimilar Weldments Joined by Constant and Pulsed Current TIG Welding Techniques, Adv. Mater. Process. Technol., 2021. https://doi.org/10.1080/2374068X.2021.1959114

    Article  Google Scholar 

  10. L. Yan, J.E. Jam, M.H. Beni, M.J. Kholoud, D. Baleanu, M.E. Shahraki, and F. Ghaemi, Effect of Laser Welding Parameters on the Temperature Distribution, Microstructure and Mechanical Properties of Dissimilar Weld Joint of Inconel 625 and Stainless Steel 304, Int. Commun. Heat Mass Transf., 2022, 131, 105859. https://doi.org/10.1016/j.icheatmasstransfer.2021.105859

    Article  CAS  Google Scholar 

  11. P.S. Senthur, K. Devendranath Ramkumar, and N. Arivazhagan, Investigation on the Fusion Zone Microstructures and Mechanical Integrity of AISI 904L and Inconel 625 Weld Joints, Mater. Res. Express., 2019, 6, 086540. https://doi.org/10.1088/2053-1591/ab1883

    Article  CAS  Google Scholar 

  12. A. Kumar and C. Pandey, Development and Evaluation of Dissimilar Gas Tungsten Arc-Welded Joint of P92 Steel/Inconel 617 Alloy for Advanced Ultra-Supercritical Boiler Applications, Metall Mater Trans A, 2022, 53, p 3245–3273. https://doi.org/10.1007/s11661-022-06723-0

    Article  CAS  Google Scholar 

  13. D. Soleimani, R.N. Durham, and M.C. Galetz, Corrosion Behavior of Stainless and Low-Chromium Steels and IN625 in Molten Nitrate Salts at 600°C, Sol. Energy Mater. Sol. Cells, 2016, 144, p 109–116. https://doi.org/10.1016/j.solmat.2015.08.011

    Article  CAS  Google Scholar 

  14. A.S. Khanna and S.K. Jha, Degradation of Materials Under Hot Corrosion Conditions, Trans. Indian Inst. Met., 1998, 51, p 279–290

    CAS  Google Scholar 

  15. E. Otero, A. Pardo, J. Hernaez, and F.J. Perez, The Hot Corrosion of Inconel 657 Superalloy in Na2SO4-V2O5 Melt Eutectic, Corros. Sci., 1991, 32, p 677. https://doi.org/10.1016/0010-938X(91)90082-Z

    Article  CAS  Google Scholar 

  16. M. Arivarasu, M. Venkatesh Kannan, K. Devendranath Ramkumar, and N. Arivazhagan, Hot-Corrosion Resistance of Dissimilar AISI 4340 and AISI 304L Weldments in the Molten Salt Environment at 600 °C, Corros. Eng. Sci. Technol., 2017, 52, p 114–123. https://doi.org/10.1080/1478422X.2016.1213061

    Article  CAS  Google Scholar 

  17. R. Kumar, V.K. Tewari, and S. Prakash, Studies on Hot Corrosion of the Microstructurally Different Regions of 2.25 Cr-1Mo (T22) Boiler Tube Steel Weldment. J. Mater. Eng. Perform., 2009, 18(7), p 959–965. https://doi.org/10.1007/s11665-008-9309-2

    Article  CAS  Google Scholar 

  18. N.F. Mohammad, S.R. Reza, A.M. Hojjat, and J. Hossein, Evaluation of the Hot Corrosion Behavior of Inconel 625 Coatings on the Inconel 738 Substrate by Laser and TIG Cladding Techniques, Opt Laser Technol., 2019, 111, p 744–753. https://doi.org/10.1016/j.optlastec.2018.09.011

    Article  CAS  Google Scholar 

  19. S.M. Muthu, R. Dinek, P. Mohan, K. Jithesh, and M. Arivarasu, Hot Corrosion Performance of bare and Pulsed Current Welded Fe-Based A-286 Alloy in Chlorine and Sulphur Environment, Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., 2022, 236, p 308–320. https://doi.org/10.1177/09544089211043414

    Article  CAS  Google Scholar 

  20. F. Khan, S. Mahajan, W.N. Khan, and R. Chhibber, Mechanical, Microstructure, and Hot Corrosion Investigations on P22/P91 Dissimilar Tungsten Inert Gas Weld, Proc Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2021, 235(9), p 2128–2141. https://doi.org/10.1177/14644207211021941

    Article  CAS  Google Scholar 

  21. M. Sireesha, S.K. Albert, V. Shankar, and S. Sundaresan, Microstructural Features of Dissimilar Welds Between 316LN Austenitic Stainless Steel and Alloy 800, Mater Sci Eng A., 2000, A292, p 74–82. https://doi.org/10.1016/S0921-5093(00)00969-2

    Article  CAS  Google Scholar 

  22. S.W. Banovic, J.N. DuPont, and A.R. Marder, Dilution and Micro Segregation is Dissimilar Metal Welds Between Super Austenitic Stainless Steel and Nickel Base Alloys, Sci. Technol. Weld. Join., 2002, 7, p 374–383. https://doi.org/10.1179/136217102225006804

    Article  CAS  Google Scholar 

  23. S. Sujai and K. Devendranath Ramkumar, Microstructure and Mechanical Characterization of Incoloy 925 Welds in the As-Welded and Direct Aged Conditions, J. Mater. Eng. Perform., 2019, 28, p 1563–1580. https://doi.org/10.1007/s11665-019-03960-0

    Article  CAS  Google Scholar 

  24. V. Bhanu, C. Pandey, and A. Gupta, Dissimilar Joining of the Martensitic Grade P91 and Incoloy 800HT Alloy for AUSC Boiler Application: Microstructure, Mechanical Properties and Residual Stresses, CIRP J. Manuf. Sci. Technol., 2022, 38, p 560–580. https://doi.org/10.1016/j.cirpj.2022.06.009

    Article  Google Scholar 

  25. J.N. DuPont, J.C. Lippold, and S.D. Liser, Welding Metallurgy and Weldability Nickel Base Alloys, John Wiley & Sons, Inc., Publication, 2009

  26. M.J. Perricone and J.N. Dupont, Effect of Composition on the Solidification Behavior of Several Ni-Cr-Mo and Fe-Ni-Cr-Mo Alloys, Metall. Mater. Trans. A., 2006, 37A, p 1267–1280. https://doi.org/10.1007/s11661-006-1078-7

    Article  CAS  Google Scholar 

  27. T.D. Anderson, M.J. Perricone, J.N. Dupont and A.R. Marder, The Influence of Molybdenum on Stainless Steel Weld Microstructures, Weld. J., 2007, 86, p 281–292

    Google Scholar 

  28. ASTM E 23–04, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, Vol I, ASTM Stand, 2013, p 1–25. https://doi.org/10.1520/E0023-12C.2

  29. M.S. Abdel Rahman, N.A. Abdel Raheem, and M.R. El Koussy, Effect of Heat Input on the Microstructure and Properties of Dissimilar Weld Joint Between Incoloy 28 and Super Austenitic Stainless Steel, Acta Metall. Sin. Engl. Lett., 2014, 27, p 259–266. https://doi.org/10.1007/s40195-014-0058-y

    Article  CAS  Google Scholar 

  30. P.S. Senthur, K. Devendranath Ramkumar, and N. Arivazhagan, Effect of Hot Corrosion on the Bimetallic Joints Employed in the Coal-Fired Boiler, Mater. Res. Express, 2019, 6, p 116511. https://doi.org/10.1088/2053-1591/ab43fd

    Article  CAS  Google Scholar 

  31. H. Li, S. Liu, F. Sun, L. Yu, J. Wang, Z. Wang, K. Han, and Y. Lei, Preliminary Investigation on Underwater Wet Welding of Inconel 625 Alloy: Microstructure, Mechanical Properties and Corrosion Resistance, J. Mater. Res. Technol., 2022, 20, p 2394–2407. https://doi.org/10.1016/j.jmrt.2022.08.035

    Article  CAS  Google Scholar 

  32. K.D. Ramkumar, W.S. Abraham, V. Viyash, N. Arivazhagan, and A.M. Rabel, Investigations on the Microstructure, Tensile Strength and High Temperature Corrosion Behaviour of Inconel 625 and Inconel 718 Dissimilar Joints, J. Manuf. Process., 2017, 25, p 306–322. https://doi.org/10.1016/j.jmapro.2016.12.018

    Article  Google Scholar 

  33. J.S. Meng, M.X. Chen, X.P. Shi, and M.A. Qiang, Effect of Co on Oxidation and Hot Corrosion Behavior of Two Nickel-Based Superalloys Under Na2SO4-NaCl at 900 °C, Trans. Nonferrous Met. Soc. China, 2021, 31, p 2402–2414. https://doi.org/10.1016/S1003-6326(21)65662-5

    Article  CAS  Google Scholar 

  34. K. Luo, S. Li, G. Xu, S.R.E. Hosseini, and J. Lu, Hot Corrosion Behaviors of Directed Energy Deposited Inconel 718/Haynes 25 Functionally Graded Material at 700°C and 900°C, Corros. Sci., 2022, 197, p 110040. https://doi.org/10.1016/j.corsci.2021.110040

    Article  CAS  Google Scholar 

  35. S. Kamal, R. Jayaganthan, and S. Prakash, High Temperature Cyclic Oxidation and Hot Corrosion Behaviours of Superalloys at 900°C, Bull. Mater. Sci., 2010, 33, p 299–306. https://doi.org/10.1007/s12034-010-0046-4

    Article  CAS  Google Scholar 

  36. S.M. Muthu and M. Arivarasu, Oxidation and Hot Corrosion Studies on Fe-Based Superalloy A-286 Pulsed Current GTA Weldments in Gas Turbine Environment, Mater. Res. Express, 2019, 6, p 116577. https://doi.org/10.1088/2053-1591/ab49cb

    Article  Google Scholar 

  37. Q. Wang, D. Zhou, M. Yu, L. Shi, X. Li, and Q. Sun, Oxidation and Hot Corrosion Behaviors of Mo-Doped NiMoAlY Alloys at 750°C, Corros. Sci., 2022, 201, p 110262. https://doi.org/10.1016/j.corsci.2022.110262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude and acknowledge VIT (Deemed-to-be University), Vellore, for granting permission to execute this research work by providing all the required facilities.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sujai.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabu, S.S., Muthu, S.M., Sujai, S. et al. Failure Assessment and High-Temperature Corrosion Behavior of Inconel 625 Welds in Simulated K2SO4 + 60% NaCl Boiler Environment. J. of Materi Eng and Perform 32, 11024–11039 (2023). https://doi.org/10.1007/s11665-023-07923-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07923-4

Keywords

Navigation