Skip to main content
Log in

Effect of Alloying Elements on the Dry Sliding Wear Characteristics of Gravity-Cast Mg-Sn Based Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of solo and combined addition of Al (3wt. %) and Zn (1wt. %) into gravity-cast Mg-10 wt. % Sn binary alloy on the dry sliding wear test has been investigated using pin-on-disk configuration with varying rotational speed (100 and 200 rpm) under a range of test loads (10, 20, 30, and 40 N). Microstructural characterization and phase analysis of the as-cast Mg-Sn alloys using scanning electron microscope and x-ray diffraction, respectively, have revealed the refinement of the binary alloy microstructure in terms of smaller dendritic arm spacing, uniform and discrete distribution of eutectic phase mixture at the interdendritic locations owing to the alloying additions. Moreover, a significant improvement in microhardness is achieved with increase in amount (wt.%) of alloying elements, depicting the highest hardness in the Mg-10Sn-3Al-1Zn (wt.%) alloy. Simultaneously, the alloying addition even in micro-concentration has been found to reduce the specific wear rate than that of the binary alloy over the entire loading range. The post-wear topographical surface features and chemical analysis using scanning electron microscope and energy-dispersive x-ray spectroscopy of the investigated alloys have suggested the oxidation and abrasion as dominant wear mechanisms. The reduced wear rates in the Al containing alloys are ascribed to the protective and continuous mechanically mixed oxide scale formation during test, which acts as a lubricating layer between the pin and the rotating disk. The discrete oxide island formation at the Zn-lean regions of Zn containing alloys is responsible for their accelerated wear rates.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The raw/processed data that have been used to generate these findings cannot be shared at this time, as the data also form part of ongoing research.

References

  1. B.L. Mordike and T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A., 2001, 302, p 37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  2. P. Zhang, Creep Behavior of the Die-Cast Mg-Al Alloy AS21, Scr. Mater., 2005, 52, p 277–282. https://doi.org/10.1016/j.scriptamat.2004.10.017

    Article  CAS  Google Scholar 

  3. Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, and J. Robson, Review on Research and Development of Magnesium Alloys ACTA Metall, Sinica Eng. Lett., 2008, 21(313), p 328. https://doi.org/10.1016/S1006-7191(08)60054-X

    Article  Google Scholar 

  4. S. Anbu Selvan and S. Ramanathan, Dry Sliding Wear Behavior of As-Cast ZE41A Magnesium Alloy, Mater. Des., 2010, 31, p 1930–1936. https://doi.org/10.1016/j.matdes.2009.10.054

    Article  CAS  Google Scholar 

  5. X.X. Lv, H.Y. Liu, Y.B. Wang, Y. Lu, G.Y. Li, and J. An, Microstructure and Dry Sliding Wear Behavior of Mg-Y-Zn Alloy Modified by Laser Surface Melting, J. Mater. Eng. Perform., 2011, 20, p 1015–1022. https://doi.org/10.1007/s11665-010-9734-x

    Article  CAS  Google Scholar 

  6. L. Li, J. Feng, C. Liang, and J. An, Dry Sliding Wear Behavior and Mild-Severe Wear Transition of Mg97Zn1Y2 Alloy at Elevated Temperatures, Materials., 2018 https://doi.org/10.3390/ma11091735

    Article  Google Scholar 

  7. H.-J. Hu, J.-Z. Fan, H. Wang, Z.-Y. Zhai, Y.-Y. Li, and Z. Ou, Dry Sliding Wear Behavior of ES-Processed AZ31B Magnesium Alloy, Russ. J. Non-Ferr. Metals., 2015, 56, p 392–398. https://doi.org/10.3103/S1067821215040057

    Article  Google Scholar 

  8. P. Poddar, A. Das, and K.L. Sahoo, Dry Sliding Wear Characteristics of Rheocast Mg-Sn Based Alloys, Mater. Des., 2014, 54, p 820–830. https://doi.org/10.1016/j.matdes.2013.08.068

    Article  CAS  Google Scholar 

  9. P. Poddar, A. Das, and K.L. Sahoo, Dry Sliding Wear Characteristics of Gravity Die-Cast Magnesium Alloys, Metall. I. Mater Trans. A., 2014, 45, p 2270–2283. https://doi.org/10.1007/s11661-013-2146-4

    Article  CAS  Google Scholar 

  10. B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, and S.M. Miresmaeili, Effect of Ca and Rare Earth Elements on Impression Creep Properties of AZ91 Magnesium Alloy, Metall. I. Mater. Trans. A., 2010, 41, p 1973–1982. https://doi.org/10.1007/s11661-010-0238-y

    Article  CAS  Google Scholar 

  11. F. Khomamizadeh, B. Nami, and S. Khoshkhooei, Effect of Rare-Earth Element Additions on High-Temperature Mechanical Properties of AZ91 Magnesium Alloy, Metall. I. Mater. Trans A., 2005, 36, p 3489–3494. https://doi.org/10.1007/s11661-005-0022-6

    Article  Google Scholar 

  12. J.G. Wang, L.M. Hsiung, T.G. Nieh, and M. Mabuchi, Creep of a Heat Treated Mg-4Y-3RE Alloy, Mater. Sci. Eng. A., 2001, 315, p 81–88. https://doi.org/10.1016/S0921-5093(01)01209-6

    Article  Google Scholar 

  13. M.S. Yoo, K.S. Shin, and N.J. Kim, Effect of Mg2Si Particles on the Elevated Temperature Tensile Properties of Squeeze-Cast Mg-Al Alloys, Metall. l. Mater. Trans. A., 2004, 35, p 1629. https://doi.org/10.1007/s11661-004-0268-4

    Article  Google Scholar 

  14. T. Bhattacharjee, C.L. Mendis, K. Oh-ishi, T. Ohkubo, and K. Hono, The effect of Ag and Ca Additions on the Age Hardening Response of Mg-Zn alloys, Mater. Sci. Eng. A., 2013, 575, p 231–240. https://doi.org/10.1016/j.msea.2013.03.069

    Article  CAS  Google Scholar 

  15. T. Bhattacharjee, C.L. Mendis, T.T. Sasaki, T. Ohkubo, and K. Hono, Effect of Zr Addition on the Precipitation in Mg-Zn-Based Alloy, Scr. Mater., 2012, 67, p 967–970. https://doi.org/10.1016/j.scriptamat.2012.08.031

    Article  CAS  Google Scholar 

  16. C.L. Mendis, K. Oh-ishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono, Precipitation-Hardenable Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) Wrought Magnesium Alloy, ACTA Mater., 2009, 57, p 749–760. https://doi.org/10.1016/j.actamat.2008.10.033

    Article  CAS  Google Scholar 

  17. C.L. Mendis, C.J. Bettles, M.A. Gibson, and C.R. Hutchinson, An Enhanced Age Hardening Response in Mg-Sn Based Alloys Containing Zn, Mater. Sci. Eng. A., 2006, 435–436, p 163–171. https://doi.org/10.1016/j.msea.2006.07.090

    Article  CAS  Google Scholar 

  18. F.R. Elsayed, T.T. Sasaki, C.L. Mendis, T. Ohkubo, and K. Hono, Compositional Optimization of Mg-Sn-Al Alloys for Higher Age Hardening Response, Mater. Sci. Eng. A., 2013, 566, p 22–29. https://doi.org/10.1016/j.msea.2012.12.041

    Article  CAS  Google Scholar 

  19. S. Bagui, A.P. Murugesan, and P. Poddar, Creep Behavior of As-Cast Mg-10 wt.%Sn and Mg-10 wt.%Sn-3 wt.%Al-1 wt.%Zn Alloys: A Comparative Study, J. Mater. Eng. Perform., 2019, 28, p 7616–7628. https://doi.org/10.1007/s11665-019-04513-1

    Article  CAS  Google Scholar 

  20. M.R. Rosenberger, E. Forlerer, and C.E. Schvezov, Wear Behavior of AA1060 Reinforced with Alumina Under Different Loads, Wear, 2009, 266, p 356–359. https://doi.org/10.1016/j.wear.2008.06.007

    Article  CAS  Google Scholar 

  21. J. Jiang, F.H. Stott, and M.M. Stack, Some Frictional Features Associated with the Sliding Wear of the Nickel-Base Alloy N80A at Temperatures to 250 °C, Wear, 1994, 176, p 185–194. https://doi.org/10.1016/0043-1648(94)90146-5

    Article  CAS  Google Scholar 

  22. W. Jiang, J. Zhu, G. Li, F. Guan, Y. Yu, and Z. Fan, Enhanced Mechanical Properties of 6082 Aluminum Alloy via SiC Addition Combined with Squeeze Casting, J. Mater. Sci. Technol., 2021, 88, p 119–131. https://doi.org/10.1016/j.jmst.2021.01.077

    Article  CAS  Google Scholar 

  23. J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu, and Z. Fan, Microstructure and Mechanical Properties of SiCnp/Al6082 Aluminum Matrix Composites Prepared by Squeeze Casting Combined with Stir Casting, J. Mater. Process. Technol., 2020, 283, p 116699. https://doi.org/10.1016/j.jmatprotec.2020.116699

    Article  CAS  Google Scholar 

  24. P. Poddar and K.L. Sahoo, Microstructure and Mechanical Properties of Conventional Cast and Rheocast Mg-Sn Based Alloys, Mater. Sci. Eng. A., 2012, 556, p 891–905. https://doi.org/10.1016/j.msea.2012.07.088

    Article  CAS  Google Scholar 

  25. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus ASTM G99-95a ASTM International, West Conshohocken, PA, 2005.

  26. X. Dong, J. Fu, J. Wang, and Y. Yang, Microstructure and Tensile Properties of As-Cast and As-Aged Mg-6Al-4Zn Alloys with Sn Addition, Mater. Des., 2013, 51, p 567–574. https://doi.org/10.1016/j.matdes.2013.04.067

    Article  CAS  Google Scholar 

  27. C.D. Ridgeway, C. Gu, and A.A. Luo, Predicting Primary Dendrite Arm Spacing in Al-Si-Mg Alloys: Effect of Mg Alloying, J. Mater. Sci., 2019, 54, p 9907–9920. https://doi.org/10.1007/s10853-019-03558-w

    Article  CAS  Google Scholar 

  28. K. H.Z.B.T. T.S. Gahr, ed., Chapter 6 Sliding Wear, in: Microstructure and Wear of Materials, Elsevier, 1987: pp. 351–495. https://doi.org/10.1016/S0167-8922(08)70724-7.

  29. C. Taltavull, P. Rodrigo, B. Torres, A.J. López, and J. Rams, Dry Sliding Wear Behavior of AM50B Magnesium Alloy, Mater. Des., 2014, 56, p 549–556. https://doi.org/10.1016/j.matdes.2013.12.015

    Article  CAS  Google Scholar 

  30. H. Chen and A.T. Alpas, Sliding Wear Map for the Magnesium Alloy Mg-9Al-0.9 Zn (AZ91), Wear, 2000, 246, p 106–116. https://doi.org/10.1016/S0043-1648(00)00495-6

    Article  CAS  Google Scholar 

  31. R. Elleuch, K. Elleuch, R. Mnif, V. Fridrici, P. Kapsa, and G. Khélifati, Comparative Study on Wear Behaviour of Magnesium and Aluminium alloys, Proceed. Instit. Mech. Eng. Part J. J. Eng. Tribol., 2006, 220, p 479–486. https://doi.org/10.1243/13506501JET70

    Article  CAS  Google Scholar 

  32. M. Mandal and R. Mitra, Study of Dry Sliding Wear Behavior of Hot-Rolled and Mushy-State Rolled Al-4.5Cu-5TiB2 In-Situ Composite with Analysis of Work Hardening and Subsurface Microstructure-Microtexture Evolution Using EBSD, Metall. L. Mater. Trans. A., 2019, 50, p 5356–5372. https://doi.org/10.1007/s11661-019-05406-7

    Article  CAS  Google Scholar 

  33. A. Mandal, M. Chakraborty, and B.S. Murty, Effect of TiB2 Particles on Sliding Wear Behaviour of Al-4Cu Alloy, Wear, 2007, 262, p 160–166. https://doi.org/10.1016/j.wear.2006.04.003

    Article  CAS  Google Scholar 

  34. A.J. Black, E.M. Kopalinsky, and P.L.B. Oxley, Asperity Deformation Models for Explaining the Mechanisms Involved in Metallic Sliding Friction and Wear—A Review, Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci., 1993, 207, p 335–353. https://doi.org/10.1243/PIME_PROC_1993_207_138_02

    Article  Google Scholar 

  35. A. Mahato, Y. Guo, N.K. Sundaram, and S. Chandrasekar, Surface Folding in Metals: a Mechanism for Delamination Wear in Sliding, Proc. Math. Phys. Eng. Sci., 2014, 470, p 20140297. https://doi.org/10.1098/rspa.2014.0297

    Article  Google Scholar 

  36. J. Glascott, F.H. Stott, and G.C. Wood, The Transition from Severe to Mild Sliding Wear for Fe-12%Cr-Base Alloys at Low Temperatures, Wear, 1984, 97, p 155–178. https://doi.org/10.1016/0043-1648(84)90124-8

    Article  CAS  Google Scholar 

  37. J.F. Archard, Contact and Rubbing of Flat Surfaces, J Appl Phys., 1953, 24, p 981–988. https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  38. H.C. How and T.N. Baker, Characterisation of Sliding Friction-Induced Subsurface Deformation of Saffil-Reinforced AA6061 Composites, Wear, 1999, 232, p 106–115. https://doi.org/10.1016/S0043-1648(99)00250-1

    Article  CAS  Google Scholar 

  39. D.A. Rigney, Transfer, Mixing and Associated Chemical and Mechanical Processes During the Sliding of Ductile Materials, Wear, 2000, 245, p 1–9. https://doi.org/10.1016/S0043-1648(00)00460-9

    Article  CAS  Google Scholar 

  40. K. Okamoto, M. Sasaki, N. Takahashi, Q. Wang, Y. Gao, D. Yin, C. Chen, Applicability of Mg-Zn-(Y, Gd) Alloys for Engine Pistons BT-Magnesium Technology 2011, in: W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, S.N. Mathaudhu (Eds.), Springer International Publishing, Cham, 2016: pp. 73–78. https://doi.org/10.1007/978-3-319-48223-1_16.

  41. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu, The Microstructure, Tensile Properties, and Creep Behavior of As-Cast Mg-(1-10)%Sn Alloys, J. Alloys Compd., 2007, 440, p 122–126. https://doi.org/10.1016/j.jallcom.2006.09.024

    Article  CAS  Google Scholar 

  42. V. Abouei, S.G. Shabestari, and H. Saghafian, Dry Sliding Wear Behaviour of Hypereutectic Al-Si Piston Alloys Containing Iron-Rich Intermetallics, Mater. Charact., 2010, 61, p 1089–1096. https://doi.org/10.1016/j.matchar.2010.07.001

    Article  CAS  Google Scholar 

  43. C. Lin, S. Wu, S. Lü, J. Zeng, and P. An, Dry Sliding Wear Behavior of Rheocast Hypereutectic Al-Si Alloys with Different Fe Contents, Trans. Nonferr. Metals Soc. China., 2016, 26, p 665–675. https://doi.org/10.1016/S1003-6326(16)64156-0

    Article  CAS  Google Scholar 

  44. M. Hu, Q. Wang, C. LI, and W. Ding, Dry Sliding Wear Behavior of cast Mg-11Y-5Gd-2Zn Magnesium Alloy, Trans. Nonferr. Metals Soc. China., 2012, 22, p 1918–1923. https://doi.org/10.1016/S1003-6326(11)61408-8

    Article  CAS  Google Scholar 

  45. J. Jiang, G. Bi, L. Zhao, R. Li, J. Lian, and Z. Jiang, Dry Sliding Wear Behavior of Extruded Mg-Sn-Yb Alloy, J. Rare Earths., 2015, 33, p 77–85. https://doi.org/10.1016/S1002-0721(14)60386-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of CSIR-National Metallurgical Laboratory, Jamshedpur, for carrying out the experiments and characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mandal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, A.P., Mandal, M., Poddar, P. et al. Effect of Alloying Elements on the Dry Sliding Wear Characteristics of Gravity-Cast Mg-Sn Based Alloys. J. of Materi Eng and Perform 32, 10767–10782 (2023). https://doi.org/10.1007/s11665-023-07875-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07875-9

Keywords

Navigation