Skip to main content
Log in

Elevated Temperature Plasma Nitriding of CrMoV Tool Steel for the Enhancement of Hardness and Wear Resistance

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Elevated temperature plasma nitriding of Cr-Mo-V-based tool steel was performed by varying the treatment time to enhance hardness and wear resistance. Steel samples after metallographic polishing were placed on the conducting substrate holder in the nitriding reactor and evacuated to 0.5 Pa pressure. The sample holder was then negatively biased at 250 V to accelerate the ions toward the surface of the samples. A gas mixture of N2 and H2 was then passed into the vacuum chamber to generate the plasma. After plasma generation nitriding was performed at variable temperatures 500 and 550 °C for 6 and 10 h. Then X-ray diffraction (XRD) and Scanning Electron Microscope/Electron Dispersive Spectroscopic (SEM/EDS) studies were followed to understand the structural modifications. XRD analysis predicted the presence of iron nitrides, whereas SEM/EDS had shown the presence of N availability from the surface to the core of the steels. Following the structural characterization hardness and wear resistance were measured by using Vicker’s microhardness tester and ball-on-plate method, respectively. It was found that the hardness, case depth, and wear resistance of the steel were significantly enhanced mainly due to nitrogen solid solution and nitride formation. Thus, it has been proved that a longer time or higher temperature of nitriding may be beneficial for such improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Ramírez, A. Mestra, B. Casas, I. Valls, R. Martínez, R. Bueno, A. Goez, A. Mateo, and L. Llanes, Influence of Substrate Microstructure on the Contact Fatigue Strength of Coated Cold-Work Tool Steels, Surf. Coat. Technol., 2012, 206, p 3069–308.

    Article  Google Scholar 

  2. M.H. Farazmand, H. Khorsand, and H. Ebrahimnezhad-Khaljiri, The Effect of the Plasma-Nitriding Process on the Structure and Wear Properties of the Sintered Low Alloy Steel, Metall. Micostruct. Anal., 2018, 7, p 711–723.

    Article  CAS  Google Scholar 

  3. A. Kehal, N. Saoula, S.-E.-H. Abaidia, and C. Nouveau, Effect of Ar/N2 Flow Ratio on the Microstructure and Mechanical Properties of Ti-Cr-N Coatings Deposited by DC Magnetron Sputtering on AISI D2 Tool Steels, Surf. Coat. Technol., 2021, 421, p 127444.

    Article  CAS  Google Scholar 

  4. P. Panjan, A. Drnovšek, P. Terek, A. Miletíc, M. Cekada, and M. Panjan, Comparative Study of Tribological Behaviour of TiN hard Coatings Deposited by Various PVD Deposition Techniques, Coatings, 2022, 12, p 294–317.

    Article  CAS  Google Scholar 

  5. H. Tekdir and A.F. Yetim, Additive Manufacturing of Multiple Layered Materials (Ti6Al4V/316L) and Improving Their Tribological Properties With Glow Discharge Surface Modification, Vacuum, 2021, 184, p 109893.

    Article  CAS  Google Scholar 

  6. H. Tekdir, T. Yetim, and A.F. Yetimm, Corrosion Properties of Ceramic-Based TiO2 Films on Plasma Oxidized Ti6Al4V/316L Layered Implant Structured Manufactured by Selective Laser Melting, J. Bionic Eng., 2021, 18, p 944–957.

    Article  Google Scholar 

  7. C. Nouveau, P. Steyer, K.R.M. Rao, and D. Lagadrillere, Plasma Nitriding of 90CrMoV8 Tool Steel for the Enhancement of Hardness and Corrosion Resistance, Surf. Coat. Technol., 2011, 205, p 4514–4520.

    Article  CAS  Google Scholar 

  8. M. Godec, B. Podgornik, A. Kocijan, Č Donik, and D.A. Skobir Balantič, Use of Plasma nitriding to Improve the Wear and Corrosion Resistance of 18Ni-300 Maraging Steel Manufactured by Selective Laser Melting, Scientifc Reports, 2021, 11, p 3277–3288.

    Article  CAS  Google Scholar 

  9. A. Mukhtar, M. Fry, B. Jackson, and L. Bolzoni, Effects of Gas Nitriding on Fatigue and Crack Initiation of Ti6Al4V produced by Selective Laser Melting, Mater. Res., 2019, 22(suppl 2), p e20180766.

    Article  Google Scholar 

  10. J. Ratajski, J. Tacikowski, and M.A.J. Somers, Development of Compound Layer of Iron (Carbo)Nitrides During Nitriding of Steel, Surf. Eng., 2013, 19, p 288–291.

    Google Scholar 

  11. A. Maniee, F. Mahboubi, and R. Soleimani, The Study of Tribological and Corrosion Behavior of Plasma Nitrided 34CrNiMo6 Steel Under Hot and Cold Wall Conditions, Mater. Des., 2014, 60, p 599–604.

    Article  CAS  Google Scholar 

  12. H.F. Rad, A. Amadeh, and H. Moradi, Wear Assessment of Plasma Nitrided AISI H11 Steel, Mater. Design., 2011, 32, p 2635–2643.

    Article  Google Scholar 

  13. P. Landgraf, T. Bergelt, L.-M. Rymer, C. Kipp, T. Grund, G. Bräuer, and T. Lampke, Evolution of Microstructure and Hardness of the Nitrided Zone during Plasma Nitriding of High-Alloy Tool Steel, Metals, 2022, 12, p 866–8888.

    Article  CAS  Google Scholar 

  14. A. Kumar, M. Kaur, A. Joseph, and G. Jhala, Surface Engineering Analysis of Plasma-Nitrided Die Steels, Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol., 2019, 234, p 917–931.

    Article  Google Scholar 

  15. M. Ettelaei, R. Soltani, and M. Rahimi, Microstructure and Wear Properties of Plasma Nitrided Low Alloy Steel Tubes, Mater. Res. Express, 2019, 6, p 126439.

    Article  CAS  Google Scholar 

  16. F. Alvarez-Antolin, A. Gonzalez-Pociño, and A. Cofiño-Villar, Hugo Alvarez-Perez Carlos, Optimisation of Thermal Processes with Plasma Nitriding on Vanadis 4 High Speed Steel, Materials, 2022, 15, p 906–925.

    Article  CAS  Google Scholar 

  17. P. Landgraf, T. Bergelt, L.M. Rymer, C. Kipp, T. Grund, G. Bräuer, and T. Lampke, Evolution of Microstructure and Hardness of the Nitrided Zone during Plasma Nitriding of High-Alloy Tool Steel, Metals, 2022, 12, p 866–888.

    Article  CAS  Google Scholar 

  18. J. Alphonsa, S. Mukherjee, and V.S. Raja, Study of Plasma Nitriding and Nitrocarburising of AISI 430F Stainless Steel for High Hardness and Corrosion Resistance, Corros. Eng., Sci. Technol., 2018, 53, p 51–58.

    Article  CAS  Google Scholar 

  19. A. Farghali and T. Aizawa, Nitrogen Supersaturation Process in the AISI420 Martensitic Stainless Steels by Low Temperature Plasma Nitriding, ISIJ Int., 2018, 58, p 401–407.

    Article  CAS  Google Scholar 

  20. Y. You, R. Li, M. Yan, J. Yan, H. Chen, C. Wang, D. Liu, L. Hong, and T. Han, Low-Temperature Plasma Nitriding of 3Cr13 Steel Accelerated by Rare-Earth Block, Coatings, 2021, 11, p 1050–1060.

    Article  CAS  Google Scholar 

  21. N. Mojtaba, M. Ghasempour-Mouziraji, B. Sadeghi, and P. Cavaliere, Characterization of Tribological and Mechanical Properties of the Si3N4 Coating Fabricated by Duplex Surface Treatment of Pack Siliconizing and Plasma Nitriding on AISI D2 Tool Steel, Metall. Mater. Trans. A, 2021, 52A, p 4753–4766.

    Google Scholar 

  22. R.L. Dalcin, V.M. de Menezes, L.F. Oliveira, C.H. da Silva, J.C.K. daS Neves, C.A.T.S. Diehl, and A. da Silva Roch, Improvement on Pitting Wear Resistance of Gears by Controlled Forging and Plasma Nitriding, J. Mat. Res. Technol. & Res., 2022, 18, p 4698–4713.

    CAS  Google Scholar 

  23. R.L. Dalcin, A. da Silva Rocha, V.V. de Castro, J.C.K. das Neves, C.H. da Silva, R.D. Torres, R.M. Nunes, and C. de Fraga Malfatti, Microstructure and RafelWear Properties of a Low Carbon Bainitic Steel on Plasma Nitriding at Different N2-H2 Gas Mixtures, Mater. Res., 2022, 25, p e20210447.

    Article  CAS  Google Scholar 

  24. R.L. Dalcin, A.D. Rocha, V.V. de Castro, L.F. Oliveira, J.C. das Neves, C.H. da Silva, and C.F. de Malfatti, Influence of Plasma Nitriding with a Nitrogen Rich Gas Composition on the Reciprocating Sliding Wear of a DIN 18MnCrSiMo6-4 Steel, Mat. Res., 2021, 24(4), p e20200592.

    Article  CAS  Google Scholar 

  25. K. R. M. Rao, C. Nouveau, and K. Trinadh, Low-Temperature Plasma Nitriding of Martensitic Stainless Steel, Trans. Indian Inst. Metals, 2020, 73, p 1695–1699.

    Article  CAS  Google Scholar 

  26. K.R.M. Rao, S. Corinne Nouveau, P. Lakshman, and K. Trinadh. Muralidhar, Effects of Low and High Temperature Plasma Nitriding on Electrochemical Corrosion of Steel, Mat. Tod. Proc., 2021, 39, p 1367–1371.

    Article  Google Scholar 

  27. K. Trinadh, C. Nouveau, and K.R.M. Rao, Effects of Plasma Nitriding on Low Alloy Cr-Mo-V Steel, Mat. Today Proc., 2021, 40, p 579–582.

    Google Scholar 

  28. D. Bhadraiah, C. Nouveau, and K.R.M. Rao, Plasma Nitriding of CrMoV Steel for the Enhancement of Hardness and Corrosion Resistance, Trans. Indian Inst. Metals, 2022, 75, p 371–380.

    Article  CAS  Google Scholar 

  29. D. Bhadraiah, C. Nouveau, and K.R.M. Rao, Plasma based Nitriding of Tool Steel for the Enhancement of Hardness, Mat. Today Proc., 2021, 46, p 940–943.

    Article  CAS  Google Scholar 

  30. D. Bhadraiah, C. Nouveau, B. Veeraswami, S. Lakshman, and K.R.M. Rao, Plasma Based Nitriding of Tool Steel for the Enhancement of Hardness, Mat. Today Proc., 2021, 46, p 689–691.

    Article  CAS  Google Scholar 

  31. K. Bouzid, N.E. Beliardough, and C. Nouveau, Wear and Corrosion Resistance of CrN-based Coatings Deposited by R.F Magnetron Sputtering, Tribol. Indus., 2015, 37(1), p 60–65.

    Google Scholar 

  32. K. Aouadi, B. Tlili, C. Nouveau, A. Besnard, M. Chafra, and R. Souli, Influence of Substrate Bias Voltage on Corrosion and Wear Behavior of Physical Vapor Deposition CrN Coatings, J. Mater. Eng. Perfor., 2019, 28(5), p 2881–2890.

    Article  CAS  Google Scholar 

  33. A. Basu, J. Dutta Majumdar, J. Alphonsa, S. Mukherjee, and I. Manna, Plasma Nitriding of a Low Alloy-High Carbon Steel, Trans. Indian Inst. Met., 2007, 60(5), p 471–479.

    CAS  Google Scholar 

  34. A. Mahmoudi and M. Esmailian, Effect of Stabilizing Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321, Adv. Mater. Res., 2010, 83–86, p 41–48.

    Article  CAS  Google Scholar 

  35. M.B. Karamiş, Friction, and Wear Behaviour of Plasma-Nitrided Layers on 3% Cr-Mo Steel, Thin Solid Films, 1991, 203, p 49–60.

    Article  Google Scholar 

Download references

Acknowledgments

For the support and encouragement and for granting the permission to present this work, the authors thankfully acknowledge GITAM (Deemed to be University), Visakhapatnam. Technical support extended by ENSAM, Paris Tech., France, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ram Mohan Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, P.J., Srinivas, V., Basu, A. et al. Elevated Temperature Plasma Nitriding of CrMoV Tool Steel for the Enhancement of Hardness and Wear Resistance. J. of Materi Eng and Perform 32, 9540–9549 (2023). https://doi.org/10.1007/s11665-023-07830-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07830-8

Keywords

Navigation