Skip to main content
Log in

An Improved Anisotropic Non-associated Plastic Potential Based on Barlat’s Yld 2000-2D Yield Stress Criterion

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work demonstrates that a non-associated Barlat’s Yld 2000-2D plastic flow stress potential gives better correlation accuracy with the Lankford and equal biaxial coefficients of plastic anisotropy than the associated flow rule. Additionally, new generalized exact equations are presented to calculate the Lankford and equal biaxial anisotropy coefficients deduced from the Yld 2000-2D function. The investigated metals were mildly and highly anisotropic Al 2024, Al 6022, Al 2090 aluminum alloys and AISI 409 steel sheets. The non-associated Barlat’s Yld 2000-2D flow stress potential is validated by plotting on the same graph predicted r-value, normalized yield stress curves and experimental data. Newton–Raphson numerical method with a relaxation factor was employed to calculate accurately the anisotropy coefficients. Present findings for slightly and highly anisotropic aluminum alloys and AISI 409 steel revealed that Barlat’s Yld 2000-2D function can be employed for accurate characterization of metal plastic anisotropy behavior by using two independent functions: the non-associated flow stress potential and the yield stress criterion. Consequently, this procedure requires a total of 12 experimental parameters of anisotropy in calibration for accurate r-value and s-value independent curves fitting. Therefore, the proposed non-associated Barlat’s Yld 2000-12p plastic potential and yield criterion give better correlation with experimental r-value and s-value data than the associated Barlat’s Yld 2004-18p flow rule. In addition, the predicted forming limit strain curves of AISI 409 steel are in good agreement with the experimental FLC, using the non-associated Barlat’s Yld 2000-2d plastic potential, better than the associated flow potential rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.W.K. Honeycombe, The Plastic Deformation of Metals, Edward Arnold, London, 1977.

    Google Scholar 

  2. U.F. Kocks, C.N. Tomé and H.-R. Wenk, Texture and Anisotropy, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  3. H. Tresca, Mémoire sur L’écoulement des Corps Solides Soumis à de Fortes Pressions, Vol 29 C.R. Acad. Sciences, Paris, 1864.

    Google Scholar 

  4. W. Johnson, R. Sowerby and R.D. Venter, Plane-Strain Slip-line Fields for Metal Deformation Processes, Pergamon Press, Oxford, 1982.

    Google Scholar 

  5. R. von Mises, Mechanik der Festen Köper im Plastischen Deformablen Zustand, Gött. Nachr. Math. Phys. Klasse, 1913, 1913, p 582–592.

    Google Scholar 

  6. J. Lemaitre and J.L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  7. D.C. Drucker, Relation of Experiments to Mathematical Theories of Plasticity, J. Appl. Mech Trans. ASME, 1949, 71, p A349–A357. https://doi.org/10.1115/1.4010009

    Article  Google Scholar 

  8. O. Cazacu and F. Barlat, Generalization of Drucker’s Yield Criterion to Orthotropy, Math. Mech. Solids, 2001, 6, p 613–630. https://doi.org/10.1177/108128650100600603

    Article  Google Scholar 

  9. N. Medeiros, L.P. Moreira, J.D. Bressan, J.F.C. Lins and J.P. Gouvea JP, Upper-Bound Sensitivity Analysis of the ECAE Process, Mater. Sci. Eng. A, 2010, 527, p 2831–2844. https://doi.org/10.1016/j.msea.2009.12.049

    Article  CAS  Google Scholar 

  10. R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. A, 1948, 193, p 281–297. https://doi.org/10.1098/rspa.1948.0045

    Article  CAS  Google Scholar 

  11. S. Kobayashi, S. Oh and T. Altan, Metal Forming and the Finite-Element Method, Oxford University Press, Oxford, 1989.

    Book  Google Scholar 

  12. J. Woodthorpe and R. Pearce, The Anomalous Behaviour of Aluminium Sheet Under Balanced Biaxial Tension, Int. J. Mech. Sci., 1970, 12, p 341–347. https://doi.org/10.1016/0020-7403(70)90087-1

    Article  Google Scholar 

  13. A.N. Bramley and P.B. Mellor, Plastic Anisotropy of Titanium and Zinc Sheet-I Macroscopic Approach, Int. J. Mech. Sci., 1968, 10, p 211–219. https://doi.org/10.1177/1056789509103482

    Article  CAS  Google Scholar 

  14. Y. Kurosaki, M. Tokiwa and K. Murai, Studies on Anisotropic Yield Criteria and Press Formability of Metal Sheets (Investigation into Bassani-Type Criteria), Bull. Jpn. Soc. Mech. Eng. (JSME), 1986, 29(255), p 3202–3208. https://doi.org/10.1299/jsme1958.29.3202

    Article  Google Scholar 

  15. R. Hill, Theoretical Plasticity of Textured Aggregates, Math. Proc. Cam. Philos. Soc., 1979, 85, p 179–191. https://doi.org/10.1017/S0305004100055596

    Article  Google Scholar 

  16. A. Parmar and P.B. Mellor, Plastic Expansion of a Circular Hole in Sheet Metal Subjected to Biaxial Tensile Stress, Int. J. Mech. Sci., 1978, 20, p 707–720. https://doi.org/10.1016/0020-7403(78)90057-7

    Article  Google Scholar 

  17. A.V. Hershey, The Plasticity of an Isotropic Aggregate of Anisotropic Face Centred Cubic Crystals, J. Appl. Mech. Trans. ASME, 1954, 21, p 241–249. https://doi.org/10.1115/1.3443401

    Article  CAS  Google Scholar 

  18. W.F. Hosford, A Generalized Isotropic Yield Criterion, J. Appl. Mech. Trans. ASME, 1972, 39, p 607–609. https://doi.org/10.1115/1.3422732

    Article  Google Scholar 

  19. R.W. Logan and W.F. Hosford, Upper-Bound Anisotropic Yield Locus Calculations Assuming <111> Pencil Glide, Int. J. Mech. Sci., 1980, 22, p 419–430. https://doi.org/10.1016/0020-7403(80)90011-9

    Article  Google Scholar 

  20. C.S. Viana, J.S. Kallend and G.J. Davies, The Use of Texture Data to Predict the Yield Locus of Metal Sheets, Int. J. Mech. Sci., 1979, 21, p 355–371. https://doi.org/10.1016/0020-7403(79)90016-X

    Article  Google Scholar 

  21. J.L. Bassani, Yield Characterization of Metals with Transversely Isotropic Plastic Properties, Int. J. Mech. Sci., 1977, 19, p 651–660. https://doi.org/10.1016/0020-7403(77)90070-4

    Article  Google Scholar 

  22. Y. Kurosaki, M. Matsumoto and M. Kobayashi, Studies on Anisotropic Yield Characteristic and Press Formability of Metal Sheets (Investigation into Pure Stretch-Forming), JSME International Journal, Serie III, 1988, 31(4), p 789–795. https://doi.org/10.1299/jsmec1988.31.789

    Article  Google Scholar 

  23. M.G. Stout and P.S. Follansbee, Strain Rate Sensitivity, Strain Hardening, and Yield Behavior of 304L Stainless Steel, J. Eng. Mater. Technol. Trans. ASME, 1986, 108(4), p 344–353. https://doi.org/10.1115/1.3225893

    Article  CAS  Google Scholar 

  24. M. Gotoh, A Theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)—I, Int. J. Mech. Sci., 1977, 19, p 505–512. https://doi.org/10.1016/0020-7403(77)90043-1

    Article  Google Scholar 

  25. P.B. Mellor and A. Parmar, Plasticity Analysis of Sheet Metal Forming, Mechanics of Sheet Metal Forming. D.P. Koistinen, N.-M. Wang Ed., Plenum Press, New York, 1978, p 53–74

    Chapter  Google Scholar 

  26. M. Gotoh, A theory of Plastic Anisotropy Based on a Yield Function of Fourth Order (Plane Stress State)-II, Int. J. Mech. Sci., 1977, 19, p 513–520. https://doi.org/10.1016/0020-7403(77)90044-3

    Article  Google Scholar 

  27. G. Ferron, R. Makkouk and J. Morreale, A Parametric Description of Orthotropic Plasticity in Metal Sheets, Int. J. Plast., 1994, 10, p 431–449. https://doi.org/10.1016/0749-6419(94)90008-6

    Article  Google Scholar 

  28. F. Barlat and J. Lian, Plastic Behavior and Stretchability of Sheet Metals. Part I a Yield Function for Orthotropic Sheets Under Plane Stress Conditions, Int. J. Plast, 1989, 5, p 51–66. https://doi.org/10.1016/0749-6419(89)90019-3

    Article  Google Scholar 

  29. F. Barlat and O. Richmond, Prediction of Tricomponent Plane Stress Yield Surfaces and Associated Flow and Failure Behavior of Strongly Textured F.C.C. Polycrystalline Sheets, Mat. Sci. Eng., 1987, 95, p 15–29. https://doi.org/10.1016/0025-5416(87)90494-0

    Article  Google Scholar 

  30. F. Barlat, D.J. Lege and J.C. Brem, A Six-component Yield Function for Anisotropic Materials, Int. J. Plast., 1991, 7, p 693–712. https://doi.org/10.1016/0749-6419(91)90052-Z

    Article  CAS  Google Scholar 

  31. F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J.C. Brem, Y. Hayashida, D.J. Lege, K. Matsui, S.J. Murtha, S. Hattori, R.C. Becker and S. Makosey, Yield Function Development for Aluminium Alloy Sheets, J. Mech. Phys. Solids, 1997, 45, p 1727–1763. https://doi.org/10.1016/S0022-5096(97)00034-3

    Article  CAS  Google Scholar 

  32. J.W. Yoon, F. Barlat, K. Chung, F. Pourboghrat and D.Y. Yang, Earing Predictions Based on Asymmetric Nonquadratic Yield Function, Int. J. Plast., 2000, 16, p 1075–1104.

    Article  CAS  Google Scholar 

  33. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi and E. Chu, Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Theory, Int. J. Plast., 2003, 19, p 1297–1319. https://doi.org/10.1016/S0749-6419(02)00019-0

    Article  CAS  Google Scholar 

  34. H. Aretz, A Non-quadratic Plane Stress Yield Function for Orthotropic Sheet Metals, J. Mater. Process. Technol., 2005, 168, p 1–9. https://doi.org/10.1016/j.jmatprotec.2004.10.008

    Article  CAS  Google Scholar 

  35. F. Bron and J. Besson, A Yield Function for Anisotropic Materials Application to Aluminum Alloys, Int. J. Plast., 2004, 20, p 937–963. https://doi.org/10.1016/j.ijplas.2003.06.001

    Article  CAS  Google Scholar 

  36. F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem and R.E. Dick, Linear Transfomation-Based Anisotropic Yield Functions, Int. J. Plast., 2005, 21, p 1009–1039. https://doi.org/10.1016/j.ijplas.2004.06.004

    Article  CAS  Google Scholar 

  37. H. Aretz and F. Barlat, Unconditionally Convex Yield Functions for Sheet Metal Forming Based on Linear Stress Deviator Transformation, Key Eng. Mater., 2012, 504–506, p 667–672. https://doi.org/10.4028/www.scientific.net/KEM.504-506.667

    Article  Google Scholar 

  38. F. Barlat, J.J. Gracio, M.-G. Lee, E.F. Rauch and G. Vincze, An Alternative to Kinematic Hardening in Classical Plasticity, Int. J. Plast., 2011, 27, p 1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003

    Article  CAS  Google Scholar 

  39. D. Banabic, H. Aretz, D.S. Comsa and L. Paraianu, An Improved Analytical Description of Orthotropy in Metallic Sheets, Int. J. Plast., 2005, 21, p 493–512. https://doi.org/10.1016/j.ijplas.2004.04.003

    Article  CAS  Google Scholar 

  40. F. Barlat, W.Y. Jeong and O. Cazacu, On Linear Transformations of Stress Tensors for the Description of Plastic Anisotropy, Int. J. Plast., 2007, 23, p 876–896. https://doi.org/10.1016/j.ijplas.2006.10.001

    Article  CAS  Google Scholar 

  41. O. Cazacu, B. Plunkett and F. Barlat, Orthotropic Yield Criterion for Hexagonal Close Packed Metals, Int. J. Plast., 2006, 22, p 1171–1194. https://doi.org/10.1016/j.ijplas.2005.06.001

    Article  CAS  Google Scholar 

  42. E.W. Kelley and W.F. Hosford, Deformation Characteristics of Textured Magnesium, Trans. TMS-AIME, 1968, 242, p 654–660.

    CAS  Google Scholar 

  43. B. Plunkett, O. Cazacu and F. Barlat, Orthotropic Yield Criteria for Description of the Anisotropy in Tension and Compression of Sheet Metals, Int. J. Plasticity, 2008, 24, p 847–866. https://doi.org/10.1016/j.ijplas.2007.07.013

    Article  CAS  Google Scholar 

  44. Y. Tozawa, Plastic Deformation Behaviour Under Conditions of Combined Stress, Mechanics of Sheet Metal Forming. D.P. Koistinen, N.-M. Wang Ed., Plenum Press, New York, 1978, p 81–109

    Chapter  Google Scholar 

  45. A.R. Ragab and Ch. Saleh, Evaluation of Constitutive Models for Voided Solids, Int. J. Plast., 1999, 15, p 1041–1065. https://doi.org/10.1016/S0749-6419(99)00024-8

    Article  Google Scholar 

  46. V. Tvergaard and A. Needleman, Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metall., 1984, 32, p 157–169. https://doi.org/10.1016/0001-6160(84)90213-X

    Article  Google Scholar 

  47. A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Mater. Technol, Trans. ASME, 1977, 99, p 2–15. https://doi.org/10.1115/1.3443401

    Article  Google Scholar 

  48. J. Zhang, L. Ma and Z.X. Zhang, Elastoplastic Damage Model for Concrete Under Triaxial Compression and Reversed Cyclic Loading, Strength Mater., 2018, 50(5), p 724–734. https://doi.org/10.1007/s11223-018-0017-3

    Article  CAS  Google Scholar 

  49. T.B. Stoughton, A Non-associated Flow Rule for Sheet Metal Forming, Int. J. Plast., 2002, 18, p 687–714. https://doi.org/10.1016/S0749-6419(01)00053-5

    Article  Google Scholar 

  50. J. Lian, F. Shen, X. Jia, D.C. Ahn, D.C. Chae, S. Münstermann and W. Bleck, An Evolving Non-associated Hill48 Plasticity Model Accounting for Anisotropic Hardening and r-value Evolution and Its Application to Forming Limit Prediction, Int. J. Solids Struct., 2018, 151, p 20–44. https://doi.org/10.1016/j.ijsolstr.2017.04.007

    Article  Google Scholar 

  51. M. Safaei, J.W. Yoon and W. De Waele, Study on the Definition of Equivalent Plastic Strain Under Non-associated Flow Rule for Finite Element Formulation, Int. J. Plast., 2014, 58, p 219–238. https://doi.org/10.1016/j.ijplas.2013.09.010

    Article  CAS  Google Scholar 

  52. T. Park and K. Chung, Non-Associated Flow Rule with Symmetric Stiffness Modulus for Isotropic-Kinematic Hardening and its Application for Earing in Circular Cup Drawing, Int. J. Solids Struct., 2012, 49, p 3582–3593. https://doi.org/10.1016/j.ijsolstr.2012.02.015

    Article  CAS  Google Scholar 

  53. J.D. Bressan, S. Bruschi and A. Ghiotti, Prediction of Limit Strains in hot Forming of Aluminium Alloy Sheets, Int. J. Mech. Sci., 2016, 115–116, p 702–710. https://doi.org/10.1016/j.ijmecsci.2016.07.040

    Article  Google Scholar 

  54. J.D. Bressan and J.A. Williams, The Use of a Shear Instability Criterion To Predict Local Necking in Sheet Metal Deformation, Int. J. Mech. Sci., 1983, 25(3), p 155–168. https://doi.org/10.1016/0020-7403(83)90089-9

    Article  Google Scholar 

  55. J.D. Bressan and F. Barlat, A Shear Fracture Criterion to Predict Limit Strains in Sheet Metal Forming, Int. J. Mater. Form., 2010, 3(Suppl 1), p 235–238.

    Article  Google Scholar 

  56. L. Xu, F. Barlat and D.C. Ahn, Constitutive Modelling of Ferritic Stainless Steel, Int. J. Mater. Form., 2010, 3, p 135–145. https://doi.org/10.1007/s12289-009-0430-z

    Article  CAS  Google Scholar 

  57. S. Panich, F. Barlat, V. Uthaisangsuk, S. Suranuntchai and S. Jirathearanat, Experimental and Theoretical Formability Analysis Using Strain and Stress Based Forming Limit Diagram for Advanced High Strength Steels, Mater. Des., 2013, 51, p 756–766. https://doi.org/10.1016/j.matdes.2013.04.080

    Article  CAS  Google Scholar 

  58. D.C. Ahn, J.W. Yoon and K.Y. Kim, Modeling of Anisotropic Plastic Behavior of Ferritic Stainless Steel Sheet, Int. J. Mech. Sci., 2009, 51, p 718–725. https://doi.org/10.1016/j.ijmecsci.2009.08.003

    Article  Google Scholar 

  59. F. Barlat, Constitutive Descriptions for Metal Forming Simulations. In: J. M. A. Cesar de Sa and A. D. Santos (eds) NUMIFORM 07, Materials Processing and Design: Modeling, Simulation and Applications, AIP, 2007, p 3–23. https://doi.org/10.1063/1.2740786

  60. J.W. Yoon, F. Barlat, R.E. Dick and M.E. Karabin, Prediction of Six or Eight Ears in a Drawn Cup Based on a New Anisotropic Yield Function, Int. J. Plast., 2006, 22, p 174–193. https://doi.org/10.1016/j.ijplas.2005.03.013

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge University of Santa Catarina State–UDESC and Instituto Tecnológico de Aeronáutica—ITA, CAPES of Brazil and CNPq through Grant No. 301069/2019-0 for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Divo Bressan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bressan, J.D., Donadon, M.V. An Improved Anisotropic Non-associated Plastic Potential Based on Barlat’s Yld 2000-2D Yield Stress Criterion. J. of Materi Eng and Perform 32, 9221–9243 (2023). https://doi.org/10.1007/s11665-023-07799-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07799-4

Keywords

Navigation