Skip to main content

Advertisement

Log in

Microstructure Evolution and Interfacial Bonding Properties of Dissimilar T-Lap Joints Using Friction Stir Welding Parameters

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dissimilar aluminum alloys 5083 and 7075 were friction-stir-welded via a T-lap configuration under various welding speeds. The microstructure evolution in both the cross and longitudinal sections was revealed at the advancing side (AS), center, and retreating side (RS). The local bonding strength along the joint interface was assessed throughout the mini-specimens extracted from the original T-joints. The results indicated that the microstructure grain size and intermixing of the two alloys with periodic material flows gradually reduced from the RS to the AS sides. Increasing the welding speed reduced both the mixture of the two metals and the microstructure grain size. The role of the intermixing of the two alloys on the interfacial bonding strength was more important than that of the grain size. The highest bonding strength was reached at approximately 380 MPa for the RS produced at 50 mm/min. A mixture of the two alloys was found on the fracture surface using analyzing energy-dispersive x-ray spectroscopy. The fractography of interfacial bonding indicated that AA5083 exhibited ductile fracture behavior, while AA7075 showed brittle failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent Development in Aluminum Alloys for Aerospace Applications, Mater. Sci. Eng. A., 2000, 280(1), p 102–107. https://doi.org/10.1016/S0921-5093(99)00674-7

    Article  Google Scholar 

  2. H. Aghajani Derazkola, N. Kordani, and H. Aghajani Derazkola, Effects of Friction Stir Welding Tool Tilt Angle on Properties of Al-Mg-Si Alloy T-Joint CIRP, J. Manuf. Sci. Technol., 2021, 33, p 264–276. https://doi.org/10.1016/j.cirpj.2021.03.015

    Article  Google Scholar 

  3. N. Kashaev, V. Ventzke, and G. Çam, Prospects of Laser Beam Welding and Friction Stir Welding Processes for Aluminum Airframe Structural Applications, J. Manuf. Process., 2018, 36, p 571–600. https://doi.org/10.1016/j.jmapro.2018.10.005

    Article  Google Scholar 

  4. O.T. Ola and F.E. Doern, Fusion Weldability Studies in Aerospace AA7075-T651 Using High-Power Continuous Wave Laser Beam Techniques, Mater. Des., 2015, 77, p 50–58. https://doi.org/10.1016/j.matdes.2015.03.064

    Article  CAS  Google Scholar 

  5. H. Yonetani, Laser-MIG Hybrid Welding to Aluminum Alloy Carbody Shell for Railway vehicles, Weld. Int., 2008, 46, p 43–47. https://doi.org/10.1080/09507110802465050

    Article  CAS  Google Scholar 

  6. K.N. Salloomi, Fully Coupled Thermomechanical Simulation of Friction Stir Welding of Aluminum 6061–T6 Alloy T-Joint, J. Manuf. Process., 2019, 45, p 746–754. https://doi.org/10.1016/j.jmapro.2019.06.030

    Article  Google Scholar 

  7. H. Li, J. Zou, J. Yao, and H. Peng, The Effect of TIG Welding Techniques on Microstructure, Properties and Porosity of the Welded Joint of 2219 Aluminum Alloy, J. Alloys Comp., 2017, 727, p 531–539. https://doi.org/10.1016/j.jallcom.2017.08.157

    Article  CAS  Google Scholar 

  8. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction-Stir Butt Welding, International Patent Application PCT/GB92/02203 and GB Patent Application. UK Patent Office, London, 1991, p 912–978

    Google Scholar 

  9. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R., 2005, 50(1–2), p 1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  10. M.M.Z. Ahmed, A. Sabbah, M.M. El-Sayed Seleman, H.R. Ammar, and A. Essam, Friction stir Welding of Similar and Dissimilar AA7075 and AA5083, J. Mater. Process. Technol., 2017, 242, p 77–91. https://doi.org/10.1016/j.jmatprotec.2016.11.024

    Article  CAS  Google Scholar 

  11. S. Mironov, Y.S. Sato, S. Yoneyama, H. Kokawa, H.T. Fujii, and S. Hirano, Microstructure and Tensile Behavior of Friction-Stir Welded TRIP Steel, Mater. Sci. Eng. A., 2018, 717, p 26–33. https://doi.org/10.1016/j.msea.2018.01.053

    Article  CAS  Google Scholar 

  12. S. Zhao, J. Ni, G. Wang, Y. Wang, Q. Bi, Y. Zhao, and X. Liu, Effects of Tool Geometry on Friction Stir Welding of AA6061 to TRIP Steel, J. Mater. Process. Technol., 2018, 261, p 39–49. https://doi.org/10.1016/j.jmatprotec.2018.06.003

    Article  CAS  Google Scholar 

  13. T.H. Tra, M. Okazaki, and K. Suzuki, Fatigue Crack Propagation Behavior in Friction Stir Welding of AA6063-T5: Roles of Residual Stress and Microstructure, Int. J. Fatigue, 2012, 43, p 23–29. https://doi.org/10.1016/j.ijfatigue.2012.02.003

    Article  CAS  Google Scholar 

  14. M. Muzvidziwa, M. Okazaki, K. Suzuki, and S. Hirano, Role of Microstructure on the Fatigue Crack Propagation Behavior of a Friction Stir Welded Ti–6Al–4V, Mater. Sci. Eng. A, 2016, 652, p 59–68. https://doi.org/10.1016/j.msea.2015.11.065

    Article  CAS  Google Scholar 

  15. Z. Sun, X. Yang, D. Li, and L. Cui, The Local Strength and Toughness for Stationary Shoulder Friction Stir Weld on AA6061-T6 Alloy, Mater. Character., 2016, 111, p 114–121. https://doi.org/10.1016/j.matchar.2015.11.020

    Article  CAS  Google Scholar 

  16. D.D. Hao, M. Okazaki, and T.H. Tra, Effect of Welding Parameters on Mechanical Properties of Friction Stir Welded T-lap Dissimilar Metal Joints Between 7075 and 5083 Aluminum Alloys, JSME-Mech. Eng. J., 2019, 6(4), p 20. https://doi.org/10.1299/mej.19-00091

    Article  CAS  Google Scholar 

  17. H. Xiaopeng, Y. Xinqi, C. Lei, and Z. Guang, Influences of Joint geoMetry on Defects and Mechanical Properties of Friction Stir Welded AA6061-T4 T-Joints, Mater. Des., 2014, 53, p 106–117. https://doi.org/10.1016/j.matdes.2013.06.061

    Article  CAS  Google Scholar 

  18. H.D. Duong, M. Okazaki, and T.H. Tran, Influence of Probe Length on the Formation of an Interface in Friction Stir Welded T-Lap Joints, Mater. Manuf. Process., 2020, 36(6), p 693–701. https://doi.org/10.1080/10426914.2020.1854470

    Article  CAS  Google Scholar 

  19. Z. Liu, Z. Zhou, and S. Ji, Improving Interface Morphology and Shear Failure Load of Friction Stir Lap Welding by Changing Material Concentrated Zone Location, Int. J. Adv. Manuf. Technol., 2018, 95, p 4013–4022. https://doi.org/10.1007/s00170-017-1508-2

    Article  Google Scholar 

  20. J.S. Jesus, J.M. Costa, A. Loureiro, and J.M. Ferreira, Assessment of Friction Stir Welding Aluminum T-Joints, J. Mater. Process. Technol., 2018, 255, p 387–399. https://doi.org/10.1016/j.jmatprotec.2017.12.036

    Article  CAS  Google Scholar 

  21. E.E. Feistauer, L.A. Bergmann, and J.F. dos Santos, Effect of Reverse Material Flow on the Microstructure and Performance of Friction Stir Welded T-Joints of an Al-Mg Alloy, Mater. Sci. Eng. A., 2018, 731, p 454–464. https://doi.org/10.1016/j.msea.2018.06.056

    Article  CAS  Google Scholar 

  22. L. Fratini, G. Buffa, F. Micari, and R. Shivpuri, On the Material Flow in FSW of T-Joints. Influence of Geometrical and Technological Parameters, Int. J. Adv. Manuf. Technol., 2009, 44, p 570–578. https://doi.org/10.1007/s00170-008-1836-3

    Article  Google Scholar 

  23. S. Ji and Z. Li, Reducing the Hook Defect of Friction Stir Lap Welded Ti-6Al-4V Alloy by Slightly Penetrating into the Lower Sheet, J. Mater. Eng. Perform., 2017, 26, p 921–930. https://doi.org/10.1007/s11665-017-2512-2

    Article  CAS  Google Scholar 

  24. Z. Ge, S. Gao, S. Ji, and D. Yan, Effect of Pin Length and Welding Speed on Lap Joint Quality of Friction Stir Welded Dissimilar Aluminum Alloys, Int. J. Adv. Manuf. Technol., 2018, 98, p 1461–1469. https://doi.org/10.1007/s00170-018-2329-7

    Article  Google Scholar 

  25. L. Cui, X. Yang, G. Zhou, X. Xu, and Z. Shen, Characteristics of Defects and Tensile Behaviors on Friction Stir Welded AA6061-T4 T-Joints, Mater. Sci. Eng. A., 2012, 543, p 58–68. https://doi.org/10.1016/j.msea.2012.02.045

    Article  CAS  Google Scholar 

  26. T. Sun, S. Wu, Y. Shen, J. Jin, J. Lu, and T. Qin, Investigation on Friction Stir welding of Mg/Al T-Joints, Trans. Indian Inst. Met., 2021, 74, p 3045–3061. https://doi.org/10.1007/s12666-020-02148-8

    Article  CAS  Google Scholar 

  27. H.D. Duong, T.H. Tran, M. Okazaki, and D.D. Truong, Pin Length, Pin Offset, and Reversed Metal Flow Interaction in the Improvement of Dissimilar Friction Stir Welded T-Lap Joints, Int. J. Adv. Manuf. Technol., 2022, 121, p 4677–4689. https://doi.org/10.1007/s00170-022-09629-8

    Article  Google Scholar 

  28. H.D. Duong and T.H. Tran, Effect of Interface Morphology on the Mechanical Properties of Friction Stir Welded T-lap Joints of 7075/5083 Aluminum Alloys, Metall. Mater. Trans. A, 2021, 52, p 3023–3033. https://doi.org/10.1007/s11661-021-06296-4

    Article  CAS  Google Scholar 

  29. P. Venkateswaran and A.P. Reynolds, Factors Affecting the Properties of Friction Stir Welds Between Aluminum and Magnesium Alloys, Mater. Sci. Eng. A., 2012, 545, p 26–37. https://doi.org/10.1016/j.msea.2012.02.069

    Article  CAS  Google Scholar 

  30. Y. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metal. Mater. Trans. A., 2002, 33, p 625–635. https://doi.org/10.1007/s11661-002-0124-3

    Article  Google Scholar 

  31. Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy, Acta Mater., 2002, 50, p 4419–4430. https://doi.org/10.1016/S1359-6454(02)00278-1

    Article  CAS  Google Scholar 

  32. A. Gerlich, P. Su, M. Yamamoto, and T.H. North, Material Flow and Intermixing During Dissimilar Friction Stir Welding, Sci. Technol. Weld. Join., 2008, 13(3), p 254–264. https://doi.org/10.1179/174329308X283910

    Article  CAS  Google Scholar 

  33. S. Hao, W. Tao, and C. Wu, Formation of the Periodic Material Flow Behaviour in Friction Stir Welding, Sci. Technol Weld. Join., 2021, 26, p 286–293. https://doi.org/10.1080/13621718.2021.1902605

    Article  CAS  Google Scholar 

  34. G.R. Cui, Z.Y. Ma, and S.X. Li, Periodical Plastic Flow Pattern in Friction Stir Processed Al–Mg Alloy, Scripta Mater., 2008, 58(12), p 1082–1085. https://doi.org/10.1016/j.scriptamat.2008.-02.003

    Article  CAS  Google Scholar 

  35. L.H. Shah, N.H. Othman, and A. Gerlich, Review of Research progress on Aluminium–Magnesium Dissimilar Friction Stir Welding, Sci. Technol. Weld. Join., 2017, 23(3), p 256–270. https://doi.org/10.1080/13621718.2017.1370193

    Article  CAS  Google Scholar 

  36. I. Kalemba-Rec, C. Hamilton, M. Kopyściański, D. Miara, and K. Krasnowski, Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys, J. Mater. Eng. Perform., 2017, 26, p 1032–1043. https://doi.org/10.1007/s11665-017-2543-8

    Article  CAS  Google Scholar 

  37. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, and P.J. Withers, Friction Stir Welding/Processing of Metals and Alloys: A Comprehensive Review on Microstructural Evolution, Prog. Mater. Sci., 2020 https://doi.org/10.1016/j.pmatsci.2020.100752

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support for this work from Nha Trang University through Grant-in-aid #TR2021-13-35. One of authors, Hao Dinh Duong, would like to express deep gratitude to Prof. Masakazu Okazaki at Nagaoka University of Technology, Japan, for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Dinh Duong.

Ethics declarations

Conflict of Interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, H.D., Tran, T.H., Dang, XP. et al. Microstructure Evolution and Interfacial Bonding Properties of Dissimilar T-Lap Joints Using Friction Stir Welding Parameters. J. of Materi Eng and Perform 32, 9428–9439 (2023). https://doi.org/10.1007/s11665-022-07798-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07798-x

Keywords

Navigation