Skip to main content

Advertisement

Log in

Rate and Load Effects on Scratch Behavior of Thermoplastics by Berkovich Indenter

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microscratch responses of four different thermoplastics including polytetrafluoroethylene, polyethylene, polyvinyl chloride, and polyetheretherketone were investigated under constant normal load by Berkovich indenter with the focus on quantifying effects of sliding speed and normal load on scratch variables such as penetration depth, elastic recovery rate, contact scratch hardness, residual scratch hardness, lateral hardness, width of residual groove, and scratch friction coefficient. The results show that penetration depth is more sensitive to sliding speed than lateral force, and power law functions are applicable to describe dependences of scratch variables on sliding speed and normal load. Correlations between scratch variables and mechanical properties such as yield strength and Meyer hardness are also discussed, and contact scratch hardness is linearly correlated with yield strength, Meyer hardness, and elastic recovery rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Abbreviations

d p :

Penetration depth

d r :

Residual depth

d e/d p :

Elastic recovery rate

v :

Sliding speed

F n :

Normal load

F t :

Lateral force

μ :

Scratch friction coefficient

E :

Elastic modulus

σ y :

Yield strength

H VM :

Meyer hardness

σ b :

Tensile strength

υ :

Poisson's ratio

w c :

Contact scratch width

w s :

Residual scratch width

S h :

Horizontally projected contact area

S v :

Vertically projected contact area

δ :

Representative strain rate

ε e :

Elastic strain

ε p :

Irreversible plastic strain

ε t :

Total strain

H c :

Contact scratch hardness

H s :

Residual scratch hardness

H l :

Lateral hardness

ψ :

Square of strain rate

φ :

The effective cone angle of the indenter

θ :

The angle between the axis and the pyramid surface of Berkovich indenter

References

  1. J. Caro, N. Cuadrado, I. González, D. Casellas, J.M. Prado, A. Vilajoana, P. Artús, S. Peris, A. Carrilero, and J.C. Dürsteler, Microscratch Resistance of Ophthalmic Coatings on Organic Lenses, Surf. Coat. Technol., 2011, 205(21–22), p 5040–5052.

    Article  CAS  Google Scholar 

  2. Liu Ming, Li. Shuo, and Gao Chenghui, Fracture Toughness Measurement by Micro-Scratch Tests with Conical Indenter, Tribology, 2019, 39(5), p 556–564.

    Google Scholar 

  3. A.T. Akono, N.X. Randall, and F.J. Ulm, Experimental Determination of the Fracture Toughness Via Microscratch Tests: Application to Polymers, Ceramics, and Metals, J. Mater. Res., 2012, 27(2), p 485–493.

    Article  CAS  Google Scholar 

  4. D. Beegan, S. Chowdhury, and M.T. Laugier, Comparison between Nanoindentation and Scratch Test Hardness (Scratch Hardness) Values of Copper Thin Films on Oxidised Silicon Substrates, Surf. Coat. Technol., 2007, 201(12), p 5804–5808.

    Article  CAS  Google Scholar 

  5. M.D. Manfrinato, L.S. de Almeida, L.S. Rossino, A.M. Kliauga, L. Melo-Máximo, D.V. Melo-Máximo, and R.C. Morón, Scratch Testing of Plasma Nitrided and Nitrocarburized AISI 321 Steel: Influence of the Treatment Temperature, Mater. Lett., 2022, 317, p 132083.

    Article  CAS  Google Scholar 

  6. R.C. Morón, A.M. Delgado-Brito, and I. Campos-Silva, Scratch Resistance of Cobalt Boride Layer Subjected to a Diffusion Annealing Process, Mater. Lett., 2022, 309, p 131352.

    Article  Google Scholar 

  7. M. Sundararajan, M. Devarajan, and M. Jaafar, A Novel Sealing and High Scratch Resistant Nanorod Ni-P Coating on Anodic Aluminum Oxide, Mater. Lett., 2021, 289, p 129425.

    Article  CAS  Google Scholar 

  8. S. Lafaye, C. Gauthier, and R. Schirrer, A Surface Flow Line Model of a Scratching Tip: Apparent and True Local Friction Coefficients, Tribol. Int., 2005, 38(2), p 113–127.

    Article  Google Scholar 

  9. K. Lee, K.P. Marimuthu, C.L. Kim, and H. Lee, Scratch-Tip-Size Effect and Change of Friction Coefficient in Nano/Micro Scratch Tests Using XFEM, Tribol. Int., 2018, 120, p 398–410.

    Article  CAS  Google Scholar 

  10. F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw, Micro-Scratch Study of a Magnetron-Sputtered Zr-Based Metallic-Glass Film, Surf. Coat. Technol., 2009, 203(22), p 3480–3484.

    Article  CAS  Google Scholar 

  11. J. Liu, Y. Lao, and Y. Wang, Effects of Cu on Microstructure and Mechanical Properties of AlN/Tin-Cu Nanocomposite Multilayers, Acta Metall. Sin., 2017, 53(4), p 465–471.

    Google Scholar 

  12. B.K. Afornu, A.M. Lider, O.A. Ismail, and E.B. Agyekum, Sintered Silicon Carbide Composites Deposited on Zirconium Alloy Substrates in Air and Ar Atmosphere—Part I: Evaluation of Scratch Adhesion and Tribology Properties, Mater. Lett., 2022, 306, p 130963.

    Article  CAS  Google Scholar 

  13. M. Storchak, I. Zakiev, V. Zakiev, and A. Manokhin, Coatings Strength Evaluation of Cutting Inserts Using Advanced Multi-Pass Scratch Method, Measurement, 2022, 191, p 110745.

    Article  Google Scholar 

  14. F. Meng, J. Wang, E. Han, T. Shoji, and W. Ke, Microstructure near Scratch on Alloy 690TT and Stress Corrosion Induced by Scratching, Acta Metall. Sin., 2011, 47(7), p 839–846.

    CAS  Google Scholar 

  15. Z. Liu, J. Sun, and W. Shen, Study of Plowing and Friction at the Surfaces of Plastic Deformed Metals, Tribol. Int., 2002, 35(8), p 511–522.

    Article  CAS  Google Scholar 

  16. T.A. Adler and R.P. Walters, Wear and Scratch Hardness of 304 Stainless-Steel Investigated with a Single Scratch Test, Wear, 1993, 162, p 713–720.

    Article  Google Scholar 

  17. G. Zhang, C. Zhang, P. Nardin, W.Y. Li, H. Liao, and C. Coddet, Effects of Sliding Velocity and Applied Load on the Tribological Mechanism of Amorphous Poly-Ether–Ether–Ketone(PEEK), Tribol. Int., 2008, 41(2), p 79–86.

    Article  CAS  Google Scholar 

  18. L.C.A. Van Breemen, L.E. Govaert, and H.E.H. Meijer, Scratching Polycarbonate: A Quantitative Model, Wear, 2012, 274–275, p 238–247.

    Article  Google Scholar 

  19. P. Bandyopadhyay, A. Dey, and A.K. Mukhopadhyay, Novel Combined Scratch and Nanoindentation Experiments on Soda-Lime-Silica Glass, Int. J. Appl. Glas. Sci., 2012, 3(2), p 163–179.

    Article  Google Scholar 

  20. K. Li, Y. Shapiro, and J.C.M. Li, Scratch Test of Soda-Lime Glass, Acta Mater., 1998, 46(15), p 5569–5578.

    Article  CAS  Google Scholar 

  21. J. Schneider, S. Schula, and W.P. Weinhold, Characterisation of the Scratch Resistance of Annealed and Tempered Architectural Glass, Thin Solid Films, 2012, 520(12), p 4190–4198.

    Article  CAS  Google Scholar 

  22. F. Petit, C. Ott, and F. Cambier, Multiple Scratch Tests and Surface-Related Fatigue Properties of Monolithic Ceramics and Soda Lime Glass, J. Eur. Ceram. Soc., 2009, 29(8), p 1299–1307.

    Article  CAS  Google Scholar 

  23. J. Xu, X. Bao, and S. Jiang, In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids, Acta Mech. Solida Sin., 2018, 54(3), p 443–456.

    CAS  Google Scholar 

  24. W. Kanematsu, Subsurface Damage in Scratch Testing of Silicon Nitride, Wear, 2004, 256(1–2), p 100–107.

    Article  CAS  Google Scholar 

  25. M. Liu, Z. Xu, and R. Fu, Micromechanical and Microstructure Characterization of BaO-Sm2O3-5TiO2 Ceramic with Addition of Al2O3, Ceram. Int., 2022, 48(1), p 992–1005.

    Article  CAS  Google Scholar 

  26. M. Liu, S. Yang, and C. Gao, Scratch Behavior of Polycarbonate by Rockwell C Diamond Indenter under Progressive Loading, Polym. Test., 2020, 90, p 106643.

    Article  CAS  Google Scholar 

  27. S. Li, J. Zhang, M. Liu, R. Wang, and L. Wu, Influence of Polyethyleneimine Functionalized Graphene on Tribological Behavior of Epoxy Composite, Polym. Bull., 2021, 78(11), p 6493–6515.

    Article  CAS  Google Scholar 

  28. O. Shikimaka and A. Prisacaru, Deformation Mechanisms under Nanoscratching of Si: Effect of Scratching Speed, Load and Indenter Orientation, Mater. Res. Express, 2019, 6(8), p 655.

    Article  Google Scholar 

  29. M. Liu and W. Wang, Effects of Sliding Velocity on Microscratch Responses of Thermoplastics by Berkovich Indenter, Polym. Bull. (Berlin), 2022, 21, p 54.

    Google Scholar 

  30. L.P. Yu, D.X. Han, J.L. Ren, X.X. Guo, S.K. Guan, and G. Wang, Correlation between Jerky Flow and Jerky Dynamics in a Nanoscratch on a Metallic Glass Film, Sci. China-Phys. Mech. Astron., 2020, 63(7), p 277011.

    Article  Google Scholar 

  31. C. Gao, H. Proudhon, and M. Liu, Three-dimensional Finite Element Analysis of Shallow Indentation of Rough Strain-hardening Surface, Friction, 2018, 7(6), p 587–602.

    Article  Google Scholar 

  32. O. Reyes-Carcaño, J. Martínez-Trinidad, A. Meneses-Amador, G.A. Rodríguez-Castro, I. Campos-Silva, and U. Figueroa-López, Scratch Test in Boride Layers: Influence of Indenter Tip Radius on Failure Mechanisms, Mater. Lett., 2022, 315, p 131918.

    Article  Google Scholar 

  33. M. Liu, F. Yan, and C. Gao, Effect of Normal Load on Microscratch Test of Copper, Acta. Metrol. Sin., 2020, 41(9), p 1095–1101.

    Google Scholar 

  34. P. Bandyopadhyay, A. Dey, A.K. Mandal, N. Dey, and A.K. Mukhopadhyay, New Observations on Scratch Deformations of Soda Lime Silica Glass, J. Non-Cryst. Solids, 2012, 358(16), p 1897–1907.

    Article  CAS  Google Scholar 

  35. M. Liu, F. Yan, and C. Gao, Effect of Sliding Velocity of a Spherical Indenter on Microscratch Response of Materials, J. Fuzhou Univ. (Nat. Sci. Edition), 2021, 49(4), p 473–484.

    Google Scholar 

  36. M. Liu, F. Yan, and C. Gao, Influence of Sliding Velocity on Microscratch Response of Carbohydrate Polymers by Berkovich Indenter, Polym. Test., 2022, 109, p 107542.

    Article  CAS  Google Scholar 

  37. J. Zhang, H. Jiang, C. Jiang, Q. Cheng, and G. Kang, In-Situ Observation of Temperature Rise During Scratch Testing of Poly(methylmethacrylate) and Polycarbonate, Tribol. Int., 2016, 95, p 1–4.

    Article  Google Scholar 

  38. M. Liu, C. Huang, and C. Gao, Effect of Sample Tilt on Measurement of Friction Coefficient by Constant-Load Scratch Testing of Copper with a Spherical Indenter, Acta Metall. Sin., 2020, 41(10), p 1252–1259.

    Google Scholar 

  39. Y.Q. Geng, Y.D. Yan, Y. He, and Z.J. Hu, Investigation on Friction Behavior and Processing Depth Prediction of Polymer in Nanoscale Using AFM Probe-Based Nanoscratching Method, Tribol. Int., 2017, 114, p 33–41.

    Article  CAS  Google Scholar 

  40. M. Liu, C. Huang, and C. Gao, Effect of Sample Tilt on Measurement of Friction Coefficient by Microscratch Test of Copper with a Spherical Indenter, Acta. Metrol. Sin., 2020, 41(10), p 1252–1259.

    Google Scholar 

  41. J. Caro, N. Cuadrado, I. Gonzalez, D. Casellas, J.M. Prado, A. Vilajoana, P. Artus, S. Peris, A. Carrilero, and J.C. Dusteler, Microscratch Resistance of Ophthalmic Coatings on Organic Lenses, Surf. Coat. Technol., 2011, 205(21–22), p 5040–5052.

    Article  CAS  Google Scholar 

  42. C. Gauthier and R. Schirrer, Time and Temperature Dependence of the Scratch Properties of Poly(methylmethacrylate) Surfaces, J. Mater. Sci., 2000, 35(9), p 2121–2130.

    Article  CAS  Google Scholar 

  43. Y.Q. Geng, Y.D. Yan, Z.J. Hu, and X.S. Zhao, Investigation of the Nanoscale Elastic Recovery of a Polymer Using an Atomic Force Microscopy-Based Method, Meas. Sci. Technol., 2016, 27(1), p 015001.

    Article  Google Scholar 

  44. A. Krupicka, M. Johansson, and A. Hult, Use and Interpretation of Scratch Tests on Ductile Polymer Coatings, Prog. Org. Coat., 2003, 46(1), p 32–48.

    Article  CAS  Google Scholar 

  45. K. Holl and T. Seul, Changes in the Mechanical Properties of Laser-Welded Polymer Specimens of Polypropylene and Polycarbonate through Different Sterilization Procedures, Polym. Eng. Sci., 2016, 56(5), p 536–540.

    Article  CAS  Google Scholar 

  46. M.A. Samad and S.K. Sinha, Dry Sliding and Boundary Lubrication Performance of a UHMWPE/CNTs Nanocomposite Coating on Steel Substrates at Elevated Temperatures, Wear, 2011, 270(5), p 395–402.

    Article  CAS  Google Scholar 

  47. X.Q. Pei, L.Y. Lin, A.K. Schlarb, and R. Bennewitz, Contact Area and Shear Stress in Repeated Single-Asperity Sliding of Steel on Polymer, Tribol. Lett., 2019, 67(1), p 30.

    Article  Google Scholar 

  48. X. Gao, Z. He, and X. Yang, Ageing Research Review of Several Polymer Compounds, Synth. Mater. Aging Appl., 2005, 34(1), p 39–43.

    Google Scholar 

  49. S.V. Nemilov, Physical Ageing of Silicate Glasses at Room Temperature: General Regularities as a Basis for the Theory and the Possibility of a Priori Calculation of the Ageing Rate, Cerem. Int., 2000, 26(6), p 511–530.

    CAS  Google Scholar 

  50. L. Ma, X. Chen, and B. Su, Aging Mechanism of Perspex under the Typical Environment, Phys. Test. Chem. Anal. (Part A Phys. Test.), 2008, 44(2), p 64–67.

    CAS  Google Scholar 

  51. S.P. Denyer, S.L. Euans, and W.N. Ayre, Ageing and Moisture Uptake in Polymethyl Methacrylate (PMMA) Bone Cements, J. Mech. Behav. Biomed. Mater., 2014, 32, p 76–88.

    Article  Google Scholar 

  52. E. Moghbelli, R. Banyay, and H.J. Sue, Effect of Moisture Exposure on Scratch Resistance of PMMA, Tribol. Int., 2014, 69(1), p 46–51.

    Article  CAS  Google Scholar 

  53. N.K. Myshkin and A. Kovalev, Polymer Mechanics and Tribology, Ind. Lubr. Tribol., 2018, 70(4), p 764–772.

    Article  Google Scholar 

  54. B. Lin, A.Y. Wang, T.Y. Sui, C.B. Wei, J.H. Wei, and S. Yan, Friction and Wear Resistance of Polytetrafluoroethylene-Based Composites Reinforced with Ceramic Particles under Aqueous Environment, Surf. Topogr.-Metrol. Prop., 2020, 8(1), p 015006.

    Article  CAS  Google Scholar 

  55. Y.J. Nie, J.Q. Sun, W.X. Yin, L.C. Wang, Z.Y. Shi, and H. Schumann, Novel Diphenyl Thioether-Bridged Binuclear Metallocenes of Ti and Zr for Synthesis of Polyethylene with Broad Molecular Weight Distribution, J. Appl. Polym. Sci., 2011, 120(6), p 3530–3535.

    Article  CAS  Google Scholar 

  56. J.W. Summers, A Review of Vinyl Technology, J. Vinyl Addit. Technol., 1997, 3(2), p 130–139.

    Article  CAS  Google Scholar 

  57. H. Spece, T. Yu, A.W. Law, M. Marcolongo, and S.M. Kurtz, 3D Printed Porous PEEK Created Via Fused Filament Fabrication for Osteoconductive Orthopaedic Surfaces, J. Mech. Behav. Biomed. Mater., 2020, 109, p 103850.

    Article  CAS  Google Scholar 

  58. C. Xiang, H.J. Sue, J. Chu, and B. Coleman, Scratch Behavior and Material Property Relationship in Polymers, J. Polym. Sci. Part B-Polym. Phys., 2001, 39(1), p 47–59.

    Article  CAS  Google Scholar 

  59. H. Jiang, R. Browning and H.J. Sue, Understanding of Scratch-Induced Damage Mechanisms in Polymers, Polymer, 2009, 50(16), p 4056–4065.

    Article  CAS  Google Scholar 

  60. A.T. AlMotasem, J. Bergström, A. Gåård, P. Krakhmalev, and L.J. Holleboom, Atomistic Insights on the Wear/Friction Behavior of Nanocrystalline Ferrite During Nanoscratching as Revealed by Molecular Dynamics, Tribol. Lett., 2017, 65(3), p 101.

    Article  Google Scholar 

  61. J.P. Manaia, F.A. Pires, A.M.P. de Jesus, and S.H. Wu, Mechanical Response of Three Semi Crystalline Polymers under Different Stress States: Experimental Investigation and Modelling, Polym. Test., 2020, 81, p 106156.

    Article  CAS  Google Scholar 

  62. J. Jancar, F. Ondreas, P. Lepcio, M. Zboncak, and K. Zarybnicka, Mechanical Properties of Glassy Polymers with Controlled Np Spatial Organization, Polym. Test., 2020, 90, p 106640.

    Article  CAS  Google Scholar 

  63. T. Sumitomo, H. Huang, and L.B. Zhou, Deformation and Material Removal in a Nanoscale Multi-Layer Thin Film Solar Panel Using Nanoscratch, Int. J. Mach. Tools Manuf., 2011, 51(3), p 182–189.

    Article  Google Scholar 

  64. V. Chivatanasoontorn, N. Aoki, and M. Kotaki, Effect of Scratch Velocity on Scratch Behavior of Injection-Molded Polypropylene, J. Appl. Polym. Sci., 2012, 125(4), p 2861–2866.

    Article  CAS  Google Scholar 

  65. R.L. Browning, H. Jiang, A. Moyse, H.J. Sue, Y. Iseki, K. Ohtani, and Y. Ijichi, Scratch Behavior of Soft Thermoplastic Olefins: Effects of Ethylene Content and Testing Rate, J. Mater. Sci., 2008, 43(4), p 1357–1365.

    Article  CAS  Google Scholar 

  66. W.C. Ko, C.K. Tseng, W.J. Wu, and C.K. Lee, Charge Storage and Mechanical Properties of Porous PTFE and Composite PTFE/COC Electrets, E-Polymers, 2010, 10(1), p 032.

    Article  Google Scholar 

  67. A.P. Vasilev, T.S. Struchkova, L.A. Nikiforov, A.A. Okhlopkova, P.N. Grakovich, E.L. Shim, and J.H. Cho, Mechanical and Tribological Properties of Polytetrafluoroethylene Composites with Carbon Fiber and Layered Silicate Fillers, Molecules, 2019, 24(2), p 224.

    Article  Google Scholar 

  68. R. Endo, K. Jounai, H. Uehara, T. Kanamoto, and R.S. Porter, Uniaxial Drawing of Polytetrafluoroethylene Virgin Powder by Extrusion Plus Cold Tensile Draw, J. Polym. Sci. Part B-Polym. Phys., 1998, 36(14), p 2551–2562.

    Article  CAS  Google Scholar 

  69. D. Vavlekas, M. Ansari, H. Hao, F. Fremy, J.L. McCoy, and S.G. Hatzikiriakos, Zero Poisson’s Ratio PTFE in Uniaxial Extension, Polym. Test., 2016, 55, p 143–151.

    Article  CAS  Google Scholar 

  70. M.P. Walker, N. Alderman, C.S. Petrie, J. Melander, and J. McGuire, Correlation of Impression Removal Force with Elastomeric Impression Material Rigidity and Hardness, J. Prosthodont. Implant Esthet. Reconstruct. Dent., 2013, 22(5), p 362–366.

    Google Scholar 

  71. V.S. Cecon, P.F. Da Silva, K.L. Vorst, and G.W. Curtzwiler, The Effect of Post-Consumer Recycled Polyethylene (PCRPE) on the Properties of Polyethylene Blends of Different Densities, Polym. Degrad. Stab., 2021, 190, p 109627.

    Article  CAS  Google Scholar 

  72. H.A. Afifi, M.M. Al-Ackad, and T. Imamura, Polymethyl Methacrylate, Polystyrene and Polyvinyl Chloride: Determination of Elastic Constants by Water Immersion Ultrasonic Sing-around Method, Kautsch. Gummi Kunstst., 2002, 55(5), p 307–310.

    CAS  Google Scholar 

  73. C.H. Xue, H. Nan, Y.H. Lu, H.Y. Chen, C.Y. Zhao, and S.A. Xu, Effects of Inorganic-Organic Surface Modification on the Mechanical and Thermal Properties of Polyvinyl Chloride Composites Reinforced with Fly-Ash, Polym. Compos., 2021, 42(4), p 1867–1877.

    Article  CAS  Google Scholar 

  74. K. Ermis, H. Unal, and M. Gunay, Glass Bead Effects on Tribological and Mechanical Properties of Plasticized Polyvinyl Chloride Cable Used in Vehicles as a Filler, Mater. Lett., 2021, 304, p 2432–2439.

    Google Scholar 

  75. K. Friedrich, H.J. Sue, P. Liu, and A.A. Almajid, Scratch Resistance of High Performance Polymers, Tribol. Int., 2011, 44(9), p 1032–1046.

    Article  CAS  Google Scholar 

  76. J.M. Park and D.S. Kim, The Influence of Crystallinity on Interfacial Properties of Carbon and SiC Two-Fiber/Polyetheretherketone (PEEK) Composites, Polym. Compos., 2000, 21(5), p 789–797.

    Article  CAS  Google Scholar 

  77. C.T. Pan, T.T. Wu, C.F. Liu, C.Y. Su, W.J. Wang, and J.C. Huang, Study of Scratching Mg-Based Bmg Using Nanoindenter with Berkovich Probe, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2010, 527(9), p 2342–2349.

    Article  Google Scholar 

  78. M. Liu and F. Yan, Comparison of Microscratch Responses of Metals between Berkovich and Rockwell C Indenters under Progressive Normal Force, Tribol. Lett., 2021, 69(4), p 8564.

    Article  Google Scholar 

  79. P. Cai, Y. Lin, Z. Ren, and D. Chen, Simulation Analysis of Chemical Mechanical Polishing Material Removal of Interconnection Chip, J. Fuzhou Univ. (Nat. Sci. Edit.), 2017, 45(5), p 692–698.

    Google Scholar 

  80. H. Pelletier, A.-L. Durier, C. Gauthier, and R. Schirrer, Viscoelastic and Elastic-Plastic Behaviors of Amorphous Polymeric Surfaces During Scratch, Tribol. Int., 2008, 41(11), p 975–984.

    Article  CAS  Google Scholar 

  81. N. Aleksy, G. Kermouche, A. Vautrin, and J.M. Bergheau, Numerical Study of Scratch Velocity Effect on Recovery of Viscoelastic-Viscoplastic Solids, Int. J. Mech. Sci., 2010, 52(3), p 455–463.

    Article  Google Scholar 

  82. C. Gao and M. Liu, Effect of Sample Tilt on Measurement of Friction Coefficient by Constant-Load Scratch Testing of Copper with a Spherical Indenter, J. Test. Eval., 2020, 48(2), p 970–989.

    Article  Google Scholar 

  83. S.D. Mcadams, T.Y. Tsui, W.C. Oliver, and G.M. Pharr, Effects of Interlayers on the Scratch Adhesion Performance of Ultra-Thin Films of Copper and Gold on Silicon Substrates, MRS Proc., 1994, 356, p 809.

    Article  Google Scholar 

  84. T.W. Scharf and J.A. Barnard, Nanotribology of Ultrathin A:SiC/SiC-N Overcoats Using a Depth Sensing Nanoindentation Multiple Sliding Technique, Thin Solid Films, 1997, 308–309, p 340–344.

    Article  Google Scholar 

  85. J. Zhang, Y. Wei, T. Sun, A. Hartmaier, Y. Yan, and X. Li, Twin Boundary Spacing-Dependent Friction in Nanotwinned Copper, Phys. Rev. B, 2012, 85(5), p 054109.

    Article  Google Scholar 

  86. S. Gao, H.G. Li, R.K. Kang, Y. Zhang, and Z.G. Dong, Effect of Strain Rate on the Deformation Characteristic of AlN Ceramics under Scratching, Micromachines, 2021, 12(1), p 77.

    Article  Google Scholar 

  87. K.J. Li, B.Y.H. Ni, and J.C.M. Li, Stick-Slip in the Scratching of Styrene-Acrylonitrile Copolymer, J. Mater. Res., 1996, 11(6), p 1574–1580.

    Article  CAS  Google Scholar 

  88. Z. Li, F. Zhang, X. Luo, and Y. Cai, Fundamental Understanding of the Deformation Mechanism and Corresponding Behavior of Rb-SiC Ceramics Subjected to Nano-Scratch in Ambient Temperature, Appl. Surf. Sci., 2019, 469, p 674–683.

    Article  CAS  Google Scholar 

  89. C. Li, F. Zhang, Y. Ding, and L. Liu, Surface Deformation and Friction Characteristic of Nano Scratch at Ductile-Removal Regime for Optical Glass BK7, Appl. Opt., 2016, 55(24), p 6547–6553.

    Article  CAS  Google Scholar 

  90. M. Liu, and J. Wu, Scratch Behaviour of Materials under Progressive Load by Conical Indenter, Chin. J. Mater. Res., 2022, 36(3), p 191–205.

    Google Scholar 

  91. N.K. Myshkin, M.I. Petrokovets, and A.V. Kovalev, Tribology of Polymers: Adhesion, Friction, Wear, and Mass-Transfer, Tribol. Int., 2005, 38(11–12), p 910–921.

    Article  CAS  Google Scholar 

  92. M.M. Hossain, H. Jiang, and H.J. Sue, Effect of Constitutive Behavior on Scratch Visibility Resistance of Polymers-a Finite Element Method Parametric Study, Wear, 2011, 270(11–12), p 751–759.

    Article  CAS  Google Scholar 

  93. J.W. Zhang, H. Jiang, C.K. Jiang, G.Z. Kang, Q.H. Kan, and Y.H. Li, Experimental and Numerical Investigations of Evaluation Criteria and Material Parameters’ Coupling Effect on Polypropylene Scratch, Polym. Eng. Sci., 2018, 58(1), p 118–122.

    Article  CAS  Google Scholar 

  94. J. Chu, C. Xiang, H.J. Sue, and R.D. Hollis, Scratch Resistance of Mineral-Filled Polypropylene Materials, Polym. Eng. Sci., 2000, 40(4), p 944–955.

    Article  CAS  Google Scholar 

  95. J.A. Williams, Analytical Models of Scratch Hardness, Tribol. Int., 1996, 29(8), p 675–694.

    Article  CAS  Google Scholar 

  96. W.B. Gu, Z.Q. Yao, and X.G. Liang, Material Removal of Optical Glass BK7 During Single and Double Scratch Tests, Wear, 2011, 270(3–4), p 241–246.

    Article  CAS  Google Scholar 

  97. Y. Xu, D. Li, J.B. Shen, S.Y. Guo, and H.J. Sue, Research Progress in Scratch Behaviors of Polymeric Materials, Acta Polym. Sin., 2018, 10, p 1262–1278.

    Google Scholar 

  98. B. Bhatt, T. Murthy, K. Singh, A. Sashanka, B. Vishwanadh, J. Sonber, K. Sairam, G. Nageswara Rao, T. Srinivasa Rao, and V. Kain, Scratch Testing of Hot-Pressed Monolithic Chromium Diboride (CrB2) and CrB2 + MoSi2 Composite, J. Mater. Eng. Perform, 2017, 26(10), p 5043–5055.

    Article  CAS  Google Scholar 

  99. M. Wong, A. Moyse, F. Lee, and H.J. Sue, Study of Surface Damage of Polypropylene under Progressive Loading, J. Mater. Sci., 2004, 39(10), p 3293–3308.

    Article  CAS  Google Scholar 

  100. D. Zhang, Y. Sun, C.H. Gao, and M. Liu, Measurement of Fracture Toughness of Copper Via Constant-Load Microscratch with a Spherical Indenter, Wear, 2020, 444, p 203158.

    Article  Google Scholar 

  101. R. Hadal, A. Dasari, J. Rohrmann, and R.D.K. Misra, Susceptibility to Scratch Surface Damage of Wollastonite- and Talc-Containing Polypropylene Micrometric Composites, Mater. Sci. Engi. Struct. Mater. Prop. Microstruct. Process., 2004, 380(1–2), p 326–339.

    Article  Google Scholar 

  102. M. Wong, G.T. Lim, A. Moyse, J.N. Reddy, and H.J. Sue, A New Test Methodology for Evaluating Scratch Resistance of Polymers, Wear, 2004, 256(11–12), p 1214–1227.

    Article  CAS  Google Scholar 

  103. G. Zhang, C. Zhang, P. Nardin, W.Y. Li, H. Liao, and C. Coddet, Effects of Sliding Velocity and Applied Load on the Tribological Mechanism of Amorphous Poly-Ether-Ether-Ketone(PEEK), Tribol. Int., 2008, 41(2), p 79–86.

    Article  CAS  Google Scholar 

  104. C. Gao and M. Liu, Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper with a Spherical Indenter, Tribol. Lett., 2019, 67(1), p 8.

    Article  Google Scholar 

  105. C. Gao and M. Liu, Instrumented Indentation of Fused Silica by Berkovich Indenter, J. Non-Cryst. Solids, 2017, 475, p 151–160.

    Article  CAS  Google Scholar 

  106. C. Gauthier, S. Lafaye, and R. Schirrer, Elastic Recovery of a Scratch in a Polymeric Surface: Experiments and Analysis, Tribol. Int., 2001, 34(7), p 469–479.

    Article  CAS  Google Scholar 

  107. B.J. Briscoe, P.D. Evans, E. Pelillo, and S.K. Sinha, Scratching Maps for Polymers, Wear, 1996, 200(1–2), p 137–147.

    Article  CAS  Google Scholar 

  108. B.J. Briscoe, E. Pelillo, and S.K. Sinha, Scratch Hardness and Deformation Maps for Polycarbonate and Polyethylene, Polym. Eng. Sci., 1996, 36(24), p 2996–3005.

    Article  Google Scholar 

  109. R.T. Zhu, Y.F. Li, X.X. Zhang, and J.Q. Zhou, Strain-Rate Sensitivity of Scratch Hardness and Deformation Mechanism in Nanocrystalline Ni under Micro-Scratch Testing, J. Mater. Sci., 2016, 51(12), p 5889–5900.

    Article  CAS  Google Scholar 

  110. M.M. Hossain, R. Minkwitz, P. Charoensirisomboon, and H.J. Sue, Quantitative Modeling of Scratch-Induced Deformation in Amorphous Polymers, Polymer, 2014, 55(23), p 6152–6166.

    Article  CAS  Google Scholar 

  111. E.M. Arruda, M.C. Boyce, and H. Quintusbosz, Effects of Initial Anisotropy on the Finite Strain Deformation-Behavior of Glassy-Polymers, Int. J. Plast, 1993, 9(7), p 783–811.

    Article  CAS  Google Scholar 

  112. E.M. Arruda and M.C. Boyce, Evolution of Plastic Anisotropy in Amorphous Polymers During Finite Straining, Int. J. Plast, 1993, 9(6), p 697–720.

    Article  CAS  Google Scholar 

  113. O.A. Hasan and M.C. Boyce, A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy-Polymers, Polym. Eng. Sci., 1995, 35(4), p 331–344.

    Article  CAS  Google Scholar 

  114. D. Zhang, Y. Sun, C. Gao, and M. Liu, Measurement of Fracture Toughness of Copper Via Constant-Load Microscratch with a Spherical Indenter, Wear, 2020, 444, p 5452.

    Google Scholar 

  115. S.L. Zhang and J.C.M. Li, Slip Process of Stick-Slip Motion in the Scratching of a Polymer, Mater. Sci. Eng. A, 2003, 344(1–2), p 182–189.

    Article  Google Scholar 

  116. P. Kurkcu, L. Andena, and A. Pavan, An Experimental Investigation of the Scratch Behaviour of Polymers: 1 Influence of Rate-Dependent Bulk Mechanical Properties, Wear, 2012, 290, p 86–93.

    Article  Google Scholar 

  117. S.K. Sinha and D.B.J. Lim, Effects of Normal Load on Single-Pass Scratching of Polymer Surfaces, Wear, 2006, 260(7–8), p 751–765.

    Article  CAS  Google Scholar 

  118. E. Amitay-Sadovsky and H.D. Wagner, Evaluation of Young’s Modulus of Polymers from Knoop Microindentation Tests, Polymer, 1998, 39(11), p 2387–2390.

    Article  CAS  Google Scholar 

  119. M. Liu and H. Proudhon, Finite Element Analysis of Contact Deformation Regimes of an Elastic-Power Plastic Hardening Sinusoidal Asperity, Mech. Mater., 2016, 103, p 78–86.

    Article  Google Scholar 

  120. P. Kurkcu, L. Andena, and A. Pavan, An Experimental Investigation of the Scratch Behaviour of Polymers-2: Influence of Hard or Soft Fillers, Wear, 2014, 317(1–2), p 277–290.

    Article  CAS  Google Scholar 

  121. M. Liu, X. Liu, and C. Gao, Microscratch Properties of Polycarbonate by Spherical Indenter, Tribology, 2021, 21, p 890–901.

    Google Scholar 

  122. M. Liu, Q. Zheng, and C. Gao, Characterization of Mechanical Properties of Bulk Metallic Glasses Based on Knoop Hardness, Acta Mech. Solida Sin., 2021, 42(4), p 376–392.

    Google Scholar 

  123. A. Abd El-Fattah, H. Youssef, M.A.H. Gepreel, R. Abbas, and S. Kandil, Surface Morphology and Mechanical Properties of Polyether Ether Ketone (PEEK) Nanocomposites Reinforced by Nano-Sized Silica (SiO2) for Prosthodontics and Restorative Dentistry, Polymers, 2021, 13(17), p 3006.

    Article  CAS  Google Scholar 

  124. S.L. Zhang and J.C.M. Li, Slip Process of Stick-Slip Motion in the Scratching of a Polymer, Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process., 2003, 344(1–2), p 182–189.

    Article  Google Scholar 

  125. W. Zhou, Y. He, and X. Lu, Scratch Deformation Mechanism of Copper Based on Acoustic Emission, Insight–Non-Destruct. Test. Cond. Monit., 2016, 58(5), p 256–263.

    Article  CAS  Google Scholar 

  126. L. Liu, H.T. Duan, D. Jia, J.S. Tu, S.P. Zhan, Y.H. Li, X.S. Luo, W. Zhan, W. Xiong, and J. Li, Effect of Contact Pressure on Reciprocating Wear Behavior of PEEK PTFE, and UHMWPE, Polymer-Korea, 2020, 44(6), p 827–834.

    Article  Google Scholar 

  127. M. Liu, C. Huang, and C. Gao, Effect of Sample Tilt and Normal Load on Micro-Scratch Test of Copper with a Spherical Indenter, Tribology, 2021, 41(1), p 27–37.

    Google Scholar 

  128. M. Liu, F. Yan, and C. Gao, Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials, Acta. Metall. Sin., 2021, 57(10), p 1333–1342.

    CAS  Google Scholar 

  129. M. Liu, Influence of Sample Tilt and Applied Load on Microscratch Behavior of Copper Under a Spherical Diamond Indenter, Tribol. Lett., 2021, 69(3), p 1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (Grant No. 51705082), Fujian Provincial Minjiang Scholar Program (Grant No. 0020-510759), and Science and Education Park of Fuzhou University in the city of Jinjiang (No. 2019-JJFDKY-11).

Author information

Authors and Affiliations

Authors

Contributions

ML contributed to conceptualization, methodology, experiment, data curation, validation, and writing–review and editing. PX contributed to writing—original draft, data analysis, investigation, and figure drawing.

Corresponding author

Correspondence to Ming Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Xie, P. Rate and Load Effects on Scratch Behavior of Thermoplastics by Berkovich Indenter. J. of Materi Eng and Perform 32, 9323–9343 (2023). https://doi.org/10.1007/s11665-022-07787-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07787-0

Keywords

Navigation