Skip to main content
Log in

Effect of Al2O3 Nanoparticle Addition on the Microstructure, Mechanical, Thermal, and Electrical Properties of Melt-Spun SAC355 Lead-Free Solder for Electronic Packaging

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study aims to investigate the impact of low-cost, highly hardened, and thermally stable Al2O3 nanoparticles (NPs) on the physical properties of the eutectic SAC355 solder alloy. Various concentrations ratios of (SAC355)100−x(Al2O3)x NPs where (x = 0.1, 0.3, 0.5, 0.7, and 1 wt.%) were synthesized using the melt-spinning process. Phase identification and morphology features of the solder were systematically studied and investigated. Microstructure studies revealed that adding a trace amount of Al2O3 NPs to the eutectic (SAC355) system refine the crystallite size of both rhombohedral β-Sn, orthorhombic Cu6Sn5 and Ag3Sn IMCs. The elastic modulus (E) and Vickers microhardness (Hv) were improved. This can be attributed to the interstitial dispersion of Al2O3 NPs at grain boundaries, which make snail-like Ag3Sn particles more uniformly distributed within β-Sn matrix that could obstruct the dislocation slipping. The results showed that creep resistance (n) decreases from dislocation climb value at 0.1 wt.% to grain boundary sliding value at 1 wt.% Al2O3 NPs content. Electrical resistance (ρ), Fermi energy (Ef), and Fermi velocity (Vf) increased with Al2O3 NPs content, while electron concentration (N) decreased due to increased charge carrier scattering centers. However, increasing the doping content of Al2O3 NPs led to an increase in the melting temperature (Tm), compared with plain solder. All results showed that Al2O3 NPs addition has an effective method to enhance new lead-free solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.A. Alsorory, M.S.S. Gumaan, and R. Shalaby, Effect of TiO 2 Nanoparticles on the Microstructure, Mechanical and Thermal Properties of Rapid Quenching SAC355 Lead-Free Solder Alloy, Solder. Surf. Mt, Technol, 2022.

    Google Scholar 

  2. S. Tikale and K.N. Prabhu, Development of Low-Silver Content SAC0307 Solder Alloy with Al2O3 Nanoparticles, Mater. Sci. Eng. A Elsevier B V, 2020, 787, p 139439.

    Article  CAS  Google Scholar 

  3. M.Z. Yahaya, N.A. Salleh, S. Kheawhom, B. Illes, M.F. Mohd Nazeri, and A.A. Mohamad, Selective Etching and Hardness Properties of Quenched SAC305 Solder Joints, Solder. Surf. Mt. Technol., 2020, 32(4), p 225–233.

    Article  Google Scholar 

  4. K. Kanlayasiri and N. Meesathien, Effects of Zinc Oxide Nanoparticles on Properties of SAC0307 Lead-Free Solder Paste, Adv. Mater. Sci. Eng, Hindawi, 2018.

    Book  Google Scholar 

  5. E. Anderson, Development of Sn-Ag-Cu and Sn-Ag-Cu-X Alloys for Pb-Free Electronic Solder Applications, J. Mater. Sci. Mater. Electron., 2007, 18(1–3), p 55–76. https://doi.org/10.1007/S10854-006-9011-9/FIGURES/21

    Article  CAS  Google Scholar 

  6. A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, I. Ihara, R.G. Guan Fatt, and H.R. Madaah-Hosseini, Nanoindentation Creep Behavior of Nanocomposite Sn-Ag-Cu Solders, J. Electron. Mater., 2012, 41(8), p 2057–2064.

    Article  CAS  Google Scholar 

  7. M.M. Jubair, M.S. Gumaan, and R.M. Shalaby, Reliable Sn-Ag-Cu Lead-Free Melt-Spun Material Required for High-Performance Applications, Zeitschrift für Kristallographie Cryst Mater., 2019, 234, p 757–767.

    Article  CAS  Google Scholar 

  8. A. Olofinjana, R. Haque, M. Mathir, and N.Y. Voo, Studies of the Solidification Characteristics in Sn-Ag-Cu-Bi Solder Alloys, Procedia Manuf Elsevier B. V, 2019, 30, p 596–603.

    Article  Google Scholar 

  9. J. Wu, S. Xue, J. Wang, and M. Wu, Coupling Effects of Rare-Earth Pr and Al2O3 Nanoparticles on the Microstructure and Properties of Sn-0.3Ag-0.7Cu Low-Ag Solder, J. Alloys Compd., 2019, 784, p 471–487.

    Article  CAS  Google Scholar 

  10. S. Tikale and K.N. Prabhu, Performance and Reliability of Al2O3 Nanoparticles Doped Multicomponent Sn-3.0Ag-0.5Cu-Ni-Ge Solder Alloy, Microelectron. Reliab. Elsevier, 2020, 113, p 113933. https://doi.org/10.1016/j.microrel.2020.113933

    Article  CAS  Google Scholar 

  11. Z.X. Li and M. Gupta, High Strength Lead-Free Composite Solder Materials Using Nano-Al 2O3 as Reinforcement, Adv. Eng. Mater., 2005, 7(11), p 1049–1054.

    Article  CAS  Google Scholar 

  12. L.C. Tsao, R.W. Wu, T.H. Cheng, K.H. Fan, and R.S. Chen, Effects of Nano-Al2O3 Particles on Microstructure and Mechanical Properties of Sn3.5Ag0.5Cu Composite Solder Ball Grid Array Joints on Sn/Cu Pads, Mater. Des., 2013, 50, p 774–781.

    Article  CAS  Google Scholar 

  13. L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, and C.H. Huang, Effects of Nano-Al2O3 Additions on Microstructure Development and Hardness of Sn3.5Ag0.5Cu Solder, Mater. Des. Elsevier Ltd, 2010, 31(10), p 4831–4835.

    CAS  Google Scholar 

  14. X. Bi, X. Hu and Q. Li, Effect of Co Addition into Ni Film on Shear Strength of Solder/Ni/Cu System: Experimental and Theoretical Investigations, Mater. Sci. Eng. A Elsevier, 2020, 788, p 139589.

    Article  CAS  Google Scholar 

  15. R. Mostafa Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Microstructural and Mechanical Characterization of Melt Spun Process Sn-3.5Ag and Sn-3.5Ag-XCu Lead-Free Solders for Low Cost Electronic Assembly, Mater. Sci. Eng. A Elsevier, 2017, 690, p 446–452.

    Article  CAS  Google Scholar 

  16. K.H. Lee and S.W. Kim, Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures, J. Korean Ceram. Soc., 2017, 54(2), p 75–85.

    Article  CAS  Google Scholar 

  17. E. Schreiber, O.L. Anderson, and N. Soga, “Elastic Constants and Their Measurement,” (New York), 1974

  18. D. Grabco and D. Leu, Deformation Mechanism as a Function of Applied Load under Metal Microindentation, Mater. Sci. Eng. A Elsevier, 2010, 527(26), p 6987–6996.

    Article  Google Scholar 

  19. R. Mostafa Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Microstructural and Mechanical Characterization of Melt Spun Process Sn-3.5Ag and Sn-3.5Ag-XCu Lead-Free Solders for Low Cost Electronic Assembly, Mater. Sci. Eng. A Elsevier, 2017, 690(2016), p 446–452.

    Article  CAS  Google Scholar 

  20. M. Changmai, J.P. Priyesh, and M.K. Purkait, Al2O3 Nanoparticles Synthesized Using Various Oxidizing Agents: Defluoridation Performance, J. Sci. Adv. Mater. Devices Elsevier Ltd, 2017, 2(4), p 483–492. https://doi.org/10.1016/j.jsamd.2017.09.001

    Article  Google Scholar 

  21. V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles, J. Theor. Appl. Phys., 2012, 6(1), p 2–9.

    Article  Google Scholar 

  22. G.K. Williamson and W.H. Hall, x-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall. Pergamon, 1953, 1(1), p 22–31.

    Article  CAS  Google Scholar 

  23. E.E.M. Noor and A. Singh, Review on the Effect of Alloying Element and Nanoparticle Additions on the Properties of Sn-Ag-Cu Solder Alloys, Solder, Surf. Mt. Technol. Emerald Group Publishing Ltd, 2014, 26(3), p 147–161.

    Article  CAS  Google Scholar 

  24. J.C. Leong, L.C. Tsao, C.J. Fang, and C.P. Chu, Effect of Nano-TiO 2 Addition on the Microstructure and Bonding Strengths of Sn3.5Ag0.5Cu Composite Solder BGA Packages with Immersion Sn Surface Finish, J. Mater. Sci. Mater. Electron., 2011, 22(9), p 1443–1449.

    Article  CAS  Google Scholar 

  25. A. Gondal, T.A. Fasasi, A. Mekki, T.A. Saleh, A.M. Ilyas, T.F. Qahtan, and X. Chang, Phase Transformation and Structural Characterization Studies of Aluminum Oxide (Al2O3) Nanoparticles Synthesized Using an Elegant Pulsed Laser Ablation in Liquids Technique, Nanosci. Nanotechnol., Lett Am. Sci. Publ., 2016, 8, p 953–960.

    Google Scholar 

  26. R.M. Shalaby, Indium, Chromium and Nickel-Modified Eutectic Sn-0.7 Wt.% Cu Lead-Free Solder Rapidly Solidified from Molten State, J. Mater. Sci. Mater. Electron. Springer US, 2015, 26(9), p 6625–6632.

    Article  CAS  Google Scholar 

  27. X. Gu, H. Bai, D. Chen, L. Zhao, J. Yi, X. Liu, and J. Yan, The Influences of Reactive Nanoparticles Alloying on Grain Boundary and Melting Properties about Sn3.0Ag0.5Cu Solder, Intermetallics, Elsevier Ltd, 2021, 138, p 107346. https://doi.org/10.1016/j.intermet.2021.107346

    Article  CAS  Google Scholar 

  28. F. Stacey and R. Irvine, Theory of Melting: Thermodynamic Basis of Lindemann’s Law, Aust. J. Phys., 1977, 30(6), p 631.

    Article  CAS  Google Scholar 

  29. C. Li, Y. Yan, T. Gao, and G. Xu, The Influence of Ag on the Microstructure, Thermal Properties and Mechanical Behavior of Sn-25Sb-XAg High Temperature Lead-Free Solder, Vacuum Elsevier Ltd, 2020, 2021(185), p 110015. https://doi.org/10.1016/j.vacuum.2020.110015

    Article  CAS  Google Scholar 

  30. Y.Y. Gafner, S.L. Gafner, I.S. Zamulin, L.V. Redel, and V.S. Baidyshev, Analysis of the Heat Capacity of Nanoclusters of FCC Metals on the Example of Al, Ni, Cu, Pd, and Au, Phys. Met. Metallogr., 2015, 116(June), p 602–609.

    CAS  Google Scholar 

  31. S.L. Gafner, L.V. Redel, and Y.Y. Gafner, Molecular-Dynamics Simulation of the Heat Capacity for Nickel and Copper Clusters: Shape and Size Effects, J. Exp. Theor. Phys., 2012, 114(3), p 428–439.

    Article  CAS  Google Scholar 

  32. R.M. Shalaby, Development of Holmium Doped Eutectic Sn-Ag Lead-Free Solder for Electronic Packaging, Solder. Surf. Mt. Technol., 2022, (December 2021)

  33. O.M. Yousri, M.H. Abdellatif, and G. Bassioni, Effect of Al 2O 3 Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite, Arab. J. Sci. Eng., 2018, 43(3), p 1511–1517.

    Article  CAS  Google Scholar 

  34. S. Huang, W. Huang, J. Liu, J. Teng, N. Li, and Y. Wen, Internal Friction Mechanism of Fe-19Mn Alloy at Low and High Strain Amplitude, Mater. Sci. Eng. Elsevier, 2013, 560, p 837–840. https://doi.org/10.1016/j.msea.2012.10.060

    Article  CAS  Google Scholar 

  35. O.L. Anderson, A Simplified Method for Calculating the Debye Temperature from Elastic Constants, J. Phys. Chem. Solids, 1963, 24, p 909–917.

    Article  CAS  Google Scholar 

  36. M. Pyke, 2002 Elastic Properties and Pressure Effects, Struct. Chem. Glas. 401–427

  37. S. Xiong, W. Qi, Y. Cheng, B. Huang, M. Wang, and Y. Li, Universal Relation for Size Dependent Thermodynamic Properties of Metallic Nanoparticles, Phys. Chem. Chem. Phys., 2011, 13(22), p 10652–10660.

    Article  CAS  Google Scholar 

  38. P. Mishra and B.K. Pandey, Variation of Debye Temperature with Size of Nanoparticles, 3Rd Int. Conf. Condens. Matter Appl. Phys., 2020, 2220(May), p 020061.

  39. Y.D. Qu, X.L. Liang, X.Q. Kong, and W.J. Zhang, Size-Dependent Cohesive Energy, Melting Temperature, and Debye Temperature of Spherical Metallic Nanoparticles, Phys. Met. Metallogr., 2017, 118(6), p 528–534.

    Article  CAS  Google Scholar 

  40. Y. Tang, G.Y. Li, and Y.C. Pan, Effects of TiO2 Nanoparticles Addition on Microstructure, Microhardness and Tensile Properties of Sn-3.0Ag-0.5Cu-XTiO2 Composite Solder, Mater. Des., 2014, 55, p 574–582.

    Article  CAS  Google Scholar 

  41. R.M. Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Design and Properties of New Lead-Free Solder Joints Using Sn-3.5Ag-Cu Solder, Silicon Silicon, 2018, 10(5), p 1861–1871.

    Article  CAS  Google Scholar 

  42. A.E. Hammad and A.A. Ibrahiem, Enhancing the Microstructure and Tensile Creep Resistance of Sn-3.0Ag-0.5Cu Solder Alloy by Reinforcing Nano-Sized ZnO Particles, Microelectron. Reliab., 2017, 75, p 187–194.

    Article  CAS  Google Scholar 

  43. O. Şahin, O. Uzun, U. Kölemen, and N. Uçar, Stress Exponent Investigation of β-Sn Single Crystal by Depth-Sensing Indentation Tests, Phys. B Condens. Matter., 2007, 396(1–2), p 87–90.

    Article  Google Scholar 

  44. M.S. Gumaan, R.M. Shalaby, E.A.M. Ali, and M. Kamal, Copper Effects in Mechanical, Thermal and Electrical Properties of Rapidly Solidified Eutectic Sn-Ag Alloy, J. Mater. Sci. Mater. Electron. Springer US, 2018, 29(11), p 8886–8894. https://doi.org/10.1007/s10854-018-8906-6

    Article  CAS  Google Scholar 

  45. P. Ma, Y. Jia, P. konda Gokuldoss, Z.Y.S. Yang, J. Zhao, and C. Li, Effect of Al2O3 Nanoparticles as Reinforcement on the Tensile Behavior of Al-12Si Composites, Metals (Basel)., 2017, 7(9), p 1–11.

    Article  Google Scholar 

  46. W. Zhu, Y. Ma, X. Li, W. Zhou, and P. Wu, Effects of Al2O3 Nanoparticles on the Microstructure and Properties of Sn58Bi Solder Alloys, J. Mater. Sci. Mater. Electron. Springer, 2018, 29(9), p 7575–7585. https://doi.org/10.1007/s10854-018-8749-1

    Article  CAS  Google Scholar 

  47. A.M. Sadoun, M.M. Mohammed, E.M. Elsayed, A.F. Meselhy, and O.A. El-Kady, Effect of Nano Al2O3 Coated Ag Addition on the Corrosion Resistance and Electrochemical Behavior of Cu-Al2O3 Nanocomposites, J. Mater Res. Technol. Korea Inst. Orient. Med., 2020, 3, p 4485–4493. https://doi.org/10.1016/j.jmrt.2020.02.076

    Article  CAS  Google Scholar 

  48. F. Ternero, E.S. Caballero, R. Astacio, J. Cintas, and J.M. Montes, Nickel Porous Compacts Obtained by Medium-Frequency Electrical Resistance Sintering, Mater. Basel, 2020, 13(9), p 1–15.

    Google Scholar 

  49. S.M.L. Nai, J. Wei, and M. Gupta, Effect of Carbon Nanotubes on the Shear Strength and Electrical Resistivity of a Lead-Free Solder, J. Electron. Mater., 2008, 37(4), p 515–522.

    Article  CAS  Google Scholar 

  50. H.S. Tekce, D. Kumlutas, I.H. Tavman, H. Serkan Tekce, D. Kumlutas, I.H. Tavman, H.S. Tekce, D. Kumlutas, and I.H. Tavman, Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites, J. Reinf. Plast. Compos., 2016, 26(1), p 113–121. https://doi.org/10.1177/0731684407072522

    Article  CAS  Google Scholar 

  51. P.F. Lang, Fermi Energy, Metals and the Drift Velocity of Electrons, Chem. Phys. Lett., 2021, 770, p 138447. https://doi.org/10.1016/j.cplett.2021.138447

    Article  CAS  Google Scholar 

  52. E.E.M. Noor, A. Singh, Y.T. Chuan, and A. Review, Influence of Nano Particles Reinforced on Solder Alloy, Solder. Surf. Mt. Technol., 2013, 25(4), p 229–241.

    Article  CAS  Google Scholar 

  53. N.-C. Lee, “Reflow Soldering Processes and Troubleshooting: SMT, BGA, CSP and Flip Chip Technologies,” Newnes, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Al-sorory.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-sorory, H., Gumaan, M.S. & Shalaby, R.M. Effect of Al2O3 Nanoparticle Addition on the Microstructure, Mechanical, Thermal, and Electrical Properties of Melt-Spun SAC355 Lead-Free Solder for Electronic Packaging. J. of Materi Eng and Perform 32, 8600–8611 (2023). https://doi.org/10.1007/s11665-022-07752-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07752-x

Keywords

Navigation