Skip to main content
Log in

The Effect of Heat Treatments on the Properties of a Ferritic High-Chromium Cast Iron

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper examines the impact of heat treatments on a ferritic high-chromium cast iron’s properties and resistance to erosion and corrosion. For that purpose, four samples were submitted to different temperatures (800, 900, 1000 and 1100 °C) for 2 h and then air-cooled. All samples were then studied in terms of hardness, microstructure, resistance to erosion and resistance to corrosion. Results showed that heat treatments affected those properties through three mechanisms: carbide coalescence, carbide dissolution and ferrite recrystallization. In fact, carbide coalescence slightly increased carbide thickness and volume fraction which in turn improved wear resistance. At around 1000 °C, carbide dissolution replaces coalescence inducing wear resistance loss, while the resistance to corrosion improves due to the added chromium content in the matrix. At higher temperatures, ferrite recrystallization occurs, resulting in the softening of the matrix grains which lowers wear resistance. Nevertheless, the overall hardness value increases due to the smaller grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.P. Tabrett, I.R. Sare, and M.R. Ghomashchi, Microstructure-Property Relationships in High Chromium White Iron Alloys, Int. Mater. Rev., 1996, 41(2), p 59–82.

    Article  CAS  Google Scholar 

  2. R.J. Llewellyn, S.K. Yick, and K.F. Dolman, Scouring Erosion Resistance of Metallic Materials Used in Slurry Pump Service, Wear, 2004, 256, p 592–599. https://doi.org/10.1016/j.wear.2003.10.002

    Article  CAS  Google Scholar 

  3. E. Zumelzu, I. Goyos, C. Cabezas, O. Opitz, and A. Parada, Wear and Corrosion Behaviour of High-Chromium (14-30% Cr) Cast Iron Alloys, J. Mater. Process. Technol., 2002, 128(1–3), p 250–255. https://doi.org/10.1016/S0924-0136(02)00458-2

    Article  CAS  Google Scholar 

  4. Z. Guo, F. Xiao, S. Lu, H. Li, and B. Liao, Effects of Heat-Treatment on the Microstructure and Wear Resistance of a High-Chromium Cast Iron for Rolls, Adv. Mater. Sci. Eng., 2016, 2016, p 1–8.

    Google Scholar 

  5. M.A. Al-bukhaiti, S.M. Ahmed, F.M.F. Badran, and K.M. Emara, Effect of Impingement Angle on Slurry Erosion Behaviour and Mechanisms of 1017 Steel and High-Chromium White Cast Iron, Wear, 2007, 262, p 1187–1198. https://doi.org/10.1016/j.wear.2006.11.018

    Article  CAS  Google Scholar 

  6. A. Wiengmoon, Carbides in High Chromium Cast Irons, Naresuan Univ. Eng. J., 2011, 6(1), p 64–71.

    Google Scholar 

  7. G.L.F. Powell and G. Laird, Structure, Nucleation, Growth and Morphology of Secondary Carbides in High Chromium and Cr-Ni White Cast Irons, J. Mater. Sci., 1992, 27(1), p 29–35. https://doi.org/10.1007/bf00553833

    Article  CAS  Google Scholar 

  8. K. Wieczerzak et al., The Effect of Temperature on the Evolution of Eutectic Carbides and M7C3 → M23C6carbides Reaction in the Rapidly Solidified Fe-Cr-C Alloy, J. Alloys Compd., 2017, 698, p 673–684. https://doi.org/10.1016/j.jallcom.2016.12.252

    Article  CAS  Google Scholar 

  9. V.G. Rivlin, 14: Critical Review of Constitution of Carbon-Chromium-Iron and Carbon-Iron-Manganese Systems, Int. Met. Rev., 1984, 29(1), p 299–327. https://doi.org/10.1179/imtr.1984.29.1.299

    Article  CAS  Google Scholar 

  10. W.R. Thorpe and B. Chicco, The Fe-rich Corner of the Metastable C-Cr-Fe Liquidus Surface, Metall. Trans. A, 1985, 16(9), p 1541–1549. https://doi.org/10.1007/BF02663011

    Article  Google Scholar 

  11. A.V. Khvan, B. Hallstedt, and C. Broeckmann, A Thermodynamic Evaluation of the Fe-Cr-C System, Calphad Comput. Coupling Phase Diagrams Thermochem., 2014, 46, p 24–33. https://doi.org/10.1016/j.calphad.2014.01.002

    Article  CAS  Google Scholar 

  12. Ö.N. Doğan, J.A. Hawk, and G. Laird, Solidification Structure and Abrasion Resistance of High Chromium White Irons, Metall. Mater. Trans. A, 1997, 28(6), p 1315–1328. https://doi.org/10.1007/s11661-997-0267-3

    Article  Google Scholar 

  13. G.L.F. Powell, I.H. Brown, and G.D. Nelson, Tough Hypereutectic High Chromium White Iron-A Double In Situ Fibrous Composite, Adv. Mater. Res., 2008, 32, p 111–114. https://doi.org/10.4028/www.scientific.net/amr.32.111

    Article  CAS  Google Scholar 

  14. M. Hernández-Mayoral and M.J. Caturla, Microstructure evolution of irradiated structural materials in nuclear power plants. in Understanding and Mitigating Ageing in Nuclear Power Plants: Materials and Operational Aspects of Plant Life Management (PLIM), Woodhead Publishing Limited, 2010, pp. 189–235.

  15. S.H. Ryu, M.S Kim, Y.S. Lee, J.T. Kim, J. Yu, and B.J. Lee. The effects of carbon and austenite stabilizing elements (Co, Cu, Ni and Mn) on the microstructural changes and the creep rupture strength in 9-12% Cr ferritic heat resistant steels. In 4th International Conference on Advances in Materials Technology for Fossil Power Plants (Vol. 2005, pp. 1280-1298).

  16. M.A. Guitar et al., High Chromium Cast Irons: Destabilized-Subcritical Secondary Carbide Precipitation and Its Effect on Hardness and Wear Properties, J. Mater. Eng. Perform., 2018, 27(8), p 3877–3885. https://doi.org/10.1007/s11665-018-3347-1

    Article  CAS  Google Scholar 

  17. T. Sun, R.B. Song, X.U. Wang, P. Deng, and C.J. Wu, Abrasive Wear Behavior and Mechanism of High Chromium Cast Iron, J. Iron Steel Res. Int., 2015, 22(1), p 84–90. https://doi.org/10.1016/S1006-706X(15)60014-0

    Article  CAS  Google Scholar 

  18. E. Karantzalis, A. Lekatou, and H. Mavros, Microstructure and Properties of High Chromium Cast Irons: Effect of Heat Treatments and Alloying Additions, Int. J. Cast Met. Res., 2009, 22(6), p 448–456. https://doi.org/10.1179/174313309x436637

    Article  CAS  Google Scholar 

  19. A.E. Karantzalis, A. Lekatou, and H. Mavros, Microstructural Modifications of As-Cast High-Chromium White Iron by Heat Treatment, J. Mater. Eng. Perform., 2009, 18(2), p 174–181. https://doi.org/10.1007/s11665-008-9285-6

    Article  CAS  Google Scholar 

  20. D. Kopycinski, E. Guzik, D. Siekaniec, and A. Szczesny, Analysis of the High Chromium Cast Iron Microstructure After the heat Treatment, Arch. Foundry Eng., 2014, 14(3), p 43–46. https://doi.org/10.2478/afe-2014-0059

    Article  CAS  Google Scholar 

  21. S. Turenne, J. Lavallée, and J. Masounave, Matrix Microstructure Effect on the Abrasion wear Resistance of High-Chromium white Cast Iron, J. Mater. Sci., 1989, 24, p 3021–3028.

    Article  CAS  Google Scholar 

  22. R. Qichang, H. Beiling, and Z. Qingde, A Study of the Impact Fatigue Resistance of Grinding Balls-Matrices and Retained Austenite, Wear, 1991, 151(1), p 13–21. https://doi.org/10.1016/0043-1648(91)90342-R

    Article  Google Scholar 

  23. M.F. Sarac and B. Dikici, Effect of Heat Treatment on Wear and Corrosion Behavior of High Chromium White Cast Iron, Mater. Test., 2019, 61(7), p 659–666. https://doi.org/10.3139/120.111382

    Article  CAS  Google Scholar 

  24. M. Gelfi, A. Pola, L. Girelli, A. Zacco, M. Masotti, and G.M. La Vecchia, Effect of Heat Treatment on Microstructure and Erosion Resistance of White Cast Irons for Slurry Pumping Applications, Wear, 2019, 428, p 438–448. https://doi.org/10.1016/j.wear.2019.03.011

    Article  CAS  Google Scholar 

  25. M. Tupaj, A.W. Orłowicz, A. Trytek, M. Mróz, G. Wnuk, and A.J. Dolata, The Effect of Cooling Conditions on Martensite tranSformation Temperature and Hardness of 15% cr Chromium Cast Iron, Materials (Basel), 2020, 13(12), p 1–13. https://doi.org/10.3390/ma13122760

    Article  CAS  Google Scholar 

  26. J.T.H. Pearce, The Use of Transmission Electron Microscopy to Study the Effects of Abrasive Wear on the Matrix Structure of a High Chromium Cast Iron, Wear, 1983, 89(3), p 333–344. https://doi.org/10.1016/0043-1648(83)90154-0

    Article  CAS  Google Scholar 

  27. A. Wiengmoon, J.T.H. Pearce, and T. Chairuangsri, Relationship Between Microstructure, Hardness and Corrosion Resistance in 20 wt.%Cr, 27 wt.%Cr and 36 wt.%Cr High Chromium Cast Irons, Mater. Chem. Phys., 2011, 125(3), p 739–748. https://doi.org/10.1016/j.matchemphys.2010.09.064

    Article  CAS  Google Scholar 

  28. D. El Bar and D. Barket, The Leaching of Sulfide Iron (II) with Sulfuric Acid, J. Min. Sci., 2015, 51(1), p 179–185. https://doi.org/10.1134/S106273911501024X

    Article  CAS  Google Scholar 

  29. L. Tao, L. Wang, K. Yang, X. Wang, L. Chen, and P. Ning, Leaching of Iron from Copper Tailings by Sulfuric Acid: Behavior, Kinetics and Mechanism, RSC Adv., 2021, 11(10), p 5741–5752. https://doi.org/10.1039/d0ra08865j

    Article  CAS  Google Scholar 

  30. M.K. Khalid, J. Hamuyuni, V. Agarwal, J. Pihlasalo, M. Haapalainen, and M. Lundström, Sulfuric Acid Leaching for Capturing Value from Copper Rich Converter Slag, J. Clean. Prod., 2019, 215, p 1005–1013. https://doi.org/10.1016/j.jclepro.2019.01.083

    Article  CAS  Google Scholar 

  31. A. Matal, M. Karim, and S. Naamane, Development and Calibration of an Experimental Test Bench Simulating Solar Reflectors Erosion, Sol. Energy, 2020, 201, p 724–731. https://doi.org/10.1016/j.solener.2020.03.028

    Article  Google Scholar 

  32. H. Liou, Y. Pan, R. Hsieh, and W. Tsai, Effects of Alloying Elements on the Mechanical Properties and Corrosion Behaviors of 2205 Duplex Stainless Steels, J. Mater. Eng. Perform., 2001, 10(April), p 231–241.

    Article  CAS  Google Scholar 

  33. S. Zhang, Q. Wang, R. Yang, and C. Dong, Composition Equivalents of Stainless Steels Understood Via Gamma Stabilizing Efficiency, Sci. Rep., 2021, 11(1), p 5423. https://doi.org/10.1038/s41598-021-84917-z

    Article  CAS  Google Scholar 

  34. E.O. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. Sect. B, 1951, 64(9), p 747.

    Article  Google Scholar 

  35. N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 24–28.

    Google Scholar 

  36. K.K. Alaneme and E.A. Okotete, Recrystallization Mechanisms and Microstructure Development in Emerging Metallic Materials: A Review, J. Sci. Adv. Mater. Devices, 2019, 4(1), p 19–33. https://doi.org/10.1016/j.jsamd.2018.12.007

    Article  Google Scholar 

  37. I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, Butterworth-Heinemann, Oxford, 2017.

    Google Scholar 

  38. V. Javaheri, D. Porter, and V.T. Kuokkala, Slurry Erosion of Steel-Review of Tests, Mechanisms and Materials, Wear, 2018, 408, p 248–273. https://doi.org/10.1016/j.wear.2018.05.010

    Article  CAS  Google Scholar 

  39. I. Finnie, Some reflections on the past and future of erosion, Wear, 1995, 186, p 1–10. https://doi.org/10.1016/0043-1648(95)07188-1

    Article  Google Scholar 

  40. R.G. Kelly, J.R. Scully, D. Shoesmith, and R.G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, CRC Press, Boca Raton, 2002.

    Book  Google Scholar 

  41. K.A. El-Aziz, D. Saber, and H.E.D.M. Sallam, Wear and Corrosion Behavior of Al-Si Matrix Composite Reinforced with Alumina, J. Bio Tribo-Corros., 2015, 1(1), p 1–10. https://doi.org/10.1007/s40735-015-0026-8

    Article  Google Scholar 

  42. A. Neville, F. Reza, S. Chiovelli, and T. Revega, Characterization and Corrosion Behavior of High-Chromium White Cast Irons, Metall. Mater. Trans. A, 2006, 37(8), p 2339–2347. https://doi.org/10.1007/BF02586208

    Article  Google Scholar 

  43. B. Sun, X. Zuo, X. Cheng, and X. Li, The Role of Chromium Content in the Long-Term Atmospheric Corrosion Process, npj Mater. Degrad., 2020, 4(1), p 1–9. https://doi.org/10.1038/s41529-020-00142-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank OCP Group S.A. for providing the data used for this study. Thanks are also extended to Dr. Ganetri Ikram for her help in revising the manuscript.

Funding

This work was financially supported by the OCP foundation, Grant No: MAT-NAA-01-2017, 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane ElJersifi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElJersifi, A., Aouadi, K., Ben Ali, M. et al. The Effect of Heat Treatments on the Properties of a Ferritic High-Chromium Cast Iron. J. of Materi Eng and Perform 32, 8262–8273 (2023). https://doi.org/10.1007/s11665-022-07700-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07700-9

Keywords

Navigation