Skip to main content
Log in

Evolution and Formation Mechanism of Interface Structure in Rolled Mg-Al Clad Sheet

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Mg-Al clad sheet was prepared by hot rolling at 420 °C for 30 min and annealed at 400 °C for 2 h. The microstructure of the bonding interface of Mg-Al clad sheet before and after annealing was characterized. The results demonstrate that after hot rolling formed, a structure composed of γ-Mg17Al12 phase and β-Al3Mg2 phase intermetallic compound. After rolling annealing, the microstructure of the interface layer changes from fine equiaxed crystals to columnar crystals with increased size. The diffusion thickening of the interface layer leads to the reduction of the bonding strength, and the tensile fracture occurs between Al3Mg2 intermetallic compounds. Through the calculation of diffusion kinetics, the bonding interface formation mechanism of Mg-Al clad sheet was constructed: Mg17Al12 was formed first to reach the solid solution saturation, and then, Al3Mg2 was formed. After the formation of Al3Mg2, the growth rate was increased, and finally, a stable interface layer was formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.K. Kim, H.S. Lim, J.H. Cho et al., Weldability during the Laser Lap Welding of Al 5052 Sheets[J], Arch. Mater. Sci. Eng., 2008, 31(2), p 113–116.

    Google Scholar 

  2. M. Shamanian, H. Mostaan, M. Safari et al., Friction Stir Modification of GTA 7075–T6 Al Alloy Weld Joints: EBSD Study and Microstructural Evolutions[J], Arch. Civil Mech. Eng., 2017, 17(3), p 574–585.

    Article  Google Scholar 

  3. W.S. Miller, L. Zhuang, J. Bottema et al., Recent Development in Aluminum Alloys for the Automotive Industry[J], Mater. Sci. Eng. A, 2000, 280(1), p 37–49.

    Article  Google Scholar 

  4. A.M. Cardinale, D. Macciò, G. Luciano et al., Thermal and Corrosion Behavior of As Cast Al-Si Alloys with Rare Earth Elements[J], J. Alloy. Compd., 2017, 695, p 2180–2189.

    Article  CAS  Google Scholar 

  5. J. Gou, A.T. Tang, F.S. Pan et al., Influence of Sn Addition on Mechanical Properties of Gas Tungsten Arc Welded AM60 Mg Alloy Sheets[J], Trans. Nonferrous Met. Soc. China, 2016, 26(8), p 2051–2057.

    Article  CAS  Google Scholar 

  6. P. Leo, G. Renna, G. Casalino et al., Effect of Power Distribution on the Weld Quality during Hybrid Laser Welding of an Al-Mg Alloy[J], Opt. Laser Technol., 2015, 73, p 118–126.

    Article  CAS  Google Scholar 

  7. P. Wang, S. Hu, J. Shen et al., Effects of Electrode Positive/Negative Ratio on Microstructure and Mechanical Properties of Mg/Al Dissimilar Variable Polarity Cold Metal Transfer Welded Joints[J], Mater. Sci. Eng. A, 2015, 652, p 127–135.

    Article  Google Scholar 

  8. F. Liu, H. Wang and L. Liu, Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn-29.5Al-0.5Ti filler metal[J], Mater. Charact., 2014, 90(4), p 1–6.

    CAS  Google Scholar 

  9. Y. Zhang, Z. Luo, Y. Li et al., Microstructure Characterization and Tensile Properties of Mg/Al Dissimilar Joints Manufactured by Thermo-Compensated Resistance Spot Welding with Zn Interlayer[J], Mater. Des., 2015, 75, p 166–173.

    Article  CAS  Google Scholar 

  10. M.D. Leon and H.S. Shin, Weldability Assessment of Mg Alloy (AZ31B) Sheets by an Ultrasonic Spot Welding Method[J], J. Mater. Process. Technol., 2016, 243, p 1–8.

    Article  Google Scholar 

  11. X. Dai, H. Zhang, J. Liu et al., Microstructure and Properties of Mg/Al Joint Welded by Gas Tungsten Arc Welding-Assisted Hybrid Ultrasonic Seam Welding[J], Mater. Des., 2015, 77, p 65–71.

    Article  CAS  Google Scholar 

  12. X. Dai, H. Zhang, B. Wang et al., Improving Weld Strength of arc-Assisted Ultrasonic Seam Welded Mg/Al Joint with Sn Interlayer[J], Mater. Des., 2016, 98, p 262–271.

    Article  CAS  Google Scholar 

  13. U. Suhuddin, V. Fischer, F. Kroeff et al., Microstructure and Mechanical Properties of Friction Spot Welds of Dissimilar AA5754 Al and AZ31 Mg Alloys[J], Mater. Sci. Eng. A, 2014, 590, p 384–389.

    Article  CAS  Google Scholar 

  14. J. Luo, W. Chen and G. Fu, Hybrid-Heat Effects on Electrical-Current Aided Friction Stir Welding of Steel, and Al and Mg Alloys[J], J. Mater. Process. Technol., 2014, 214(12), p 3002–3012.

    Article  CAS  Google Scholar 

  15. G. Cam, Friction Stir Welded Structural Materials: Beyond Al-Alloys[J], Int. Mater. Rev., 2011, 56(1), p 1–48.

    Article  CAS  Google Scholar 

  16. G. Cam and S. Mistikoglu, Recent Developments in Friction Stir Welding of Al-alloys[J], J. Mater. Eng. Perform., 2014, 23(6), p 1936–1953.

    Article  CAS  Google Scholar 

  17. X.B. Liu, R.S. Chen and E.H. Han, Preliminary Investigations on the Mg-Al-Zn/Al Laminated Composite Fabricated by Equal Channel Angular Extrusion[J], J. Mater. Process. Technol., 2009, 209(10), p 4675–4681.

    Article  CAS  Google Scholar 

  18. B. Zhu, W. Liang and X.R. Li, Interfacial Microstructure, Bonding Strength and Fracture of Magnesium-Aluminum Laminated Composite Plates Fabricated by Direct Hot Pressing, Mater. Sci. Eng. A, 2011, 528, p 6584–6488.

    Article  CAS  Google Scholar 

  19. A. Azizi, H. Alimardan, D.O. Engineering et al., Effect of Welding Temperature and Duration on Properties of 7075 Al to AZ31B Mg Diffusion Bonded Joint[J], Trans. Nonferrous Met. Soc. China, 2016, 26(1), p 85–92.

    Article  CAS  Google Scholar 

  20. J. Zhang, G. Luo and Y. Wang, Effect of Al Thin Film and Ni Foil Interlayer on Diffusion Bonded Mg-Al Dissimilar Joints, J. Alloy. Compd., 2013, 556, p 139–142.

    Article  CAS  Google Scholar 

  21. G. Mahendran, V. Balasubramanian and T. Senthilvelan, Developing Diffusion Bonding Windows for Joining AZ31B Magnesium-AA2024 Aluminum Alloys, Mater. Des., 2009, 30, p 1240–1244.

    Article  CAS  Google Scholar 

  22. X.B. Liu, L.M. Zhao and R.Z. Xu, Effect of Interlayer Composition on the Microstructure and Strength of Diffusion Bonded Mg/Al Joint, Mater. Des., 2009, 30, p 4548–4551.

    Article  CAS  Google Scholar 

  23. H. Chang, M.Y. Zheng and C. Xu, Microstructure and Mechanical Properties of the Mg/Al Multilayer Fabricated by Accumulative Roll Bonding (ARB) at Ambient Temperature, Mater. Sci. Eng. A, 2012, 543, p 249–256.

    Article  CAS  Google Scholar 

  24. H.S. Liu, B. Zhang and G.P. Zhang, Microstructures and Mechanical Properties of Al/Mg Alloy Multilayered Composites Produced by Accumulative Roll Bonding, J. Mater. Sci. Technol., 2011, 27(1), p 15–21.

    Article  Google Scholar 

  25. H. Nie, W. Liang, C. Chi et al., Effect of Annealing on Microstructure and Tensile Properties of 5052/AZ31/5052 Clad Sheets[J], JOM, 2016, 68(5), p 1–11.

    Article  Google Scholar 

  26. N. Zhang, W. Wang, X. Cao et al., The Effect of Annealing on the Interface Microstructure and Mechanical Characteristics of AZ31B/AA6061 Composite Plates Fabricated by Explosive Welding[J], Mater. Des., 2015, 65, p 1100–1109.

    Article  CAS  Google Scholar 

  27. Y.B. Yan, Z.W. Zhang and W. Shen, Microstructure and Properties of Magnesium AZ31B-Aluminum7075 Explosively Welded Composite Plate, Mater. Sci. Eng. A, 2010, 527, p 2241–2245.

    Article  Google Scholar 

  28. D. Wang, X. Cao, L. Wang et al., Influence of Hot Rolling on the Interface Microstructure and Mechanical Properties of Explosive Welded Mg/Al Composite Plates[J], J. Mater. Res., 2017, 32(4), p 863–873.

    Article  CAS  Google Scholar 

  29. M. Kawasaki, B. Ahn, H.J. Lee et al., Using High-Pressure Torsion to Process an Aluminum-Magnesium Nanocomposite Through Diffusion Bonding[J], J. Mater. Res., 2016, 31, p 1–12.

    Article  Google Scholar 

  30. X. Qiao, X. Li, X. Zhang et al., Intermetallics Formed at Interface of Ultrafine Grained Al/Mg bi-Layered Disks Processed by High Pressure Torsion at Room Temperature[J], Mater. Lett., 2016, 181, p 187–190.

    Article  CAS  Google Scholar 

  31. S.S.S. Afghahi, M. Jafarian, M. Paidar et al., Diffusion Bonding of Al 7075 and Mg AZ31 Alloys: Process Parameters, Microstructural Analysis and Mechanical Properties[J], Trans. Nonferrous Met. Soc. China, 2016, 26(7), p 1843–1851.

    Article  Google Scholar 

  32. H. Chang and M. Zheng, Effect of Intermetallic Compounds on the Fracture Behavior of Mg/Al Laminated Composite Fabricated by Accumulative Roll Bonding[J], Rare Met. Mater. Eng., 2016, 45(9), p 2242–2245.

    Article  CAS  Google Scholar 

  33. M. Jafarian, M.S. Rizi, M. Jafarian et al., Effect of Thermal Tempering on Microstructure and Mechanical Properties of Mg-AZ31/Al-6061 Diffusion Bonding[J], Mater. Sci. Eng. A, 2016, 666, p 372–379.

    Article  CAS  Google Scholar 

  34. M.X. Xie, L.J. Zhang, G.F. Zhang et al., Microstructure and Mechanical Properties of CP-Ti/X65 Bimetallic Sheets Fabricated by Explosive Welding and Hot Rolling[J], Mater. Des., 2015, 87, p 181–197.

    Article  CAS  Google Scholar 

  35. K. Najim, Microstructure and Mechanical Properties of Titanium-Steel Composite Plate with Explosive Welding[J], Press. Vessel Technol., 2012, 27(1), p 521–530.

    Google Scholar 

  36. B. Wronka, Testing of Explosive Welding and Welded Joints. The Microstructure of Explosive Welded Joints and Their Mechanical Properties[J], J. Mater. Sci., 2010, 45(13), p 3465–3469.

    Article  CAS  Google Scholar 

  37. A. Galiyev, R. Kaibyshev and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60[J], Acta Mater., 2001, 49(7), p 1199–1207.

    Article  CAS  Google Scholar 

  38. P. Zhang, T.H. Yang, S. Castagne and J.T. Wang, Microstructure; Bonding Strength and Thickness Ratio of Al/Mg/Al Alloy Laminated Composites Prepared by Hot Rolling[J], Mater. Sci. Eng. A, 2011, 528(4–5), p 1954–1960.

    Article  Google Scholar 

  39. L.Y. Sheng, F. Yang, T.F. Xi et al., Influence of Heat Treatment on Interface of Cu/Al Bimetal Composite Fabricated by Cold Rolling[J], Compos. B Eng., 2011, 42, p 1468–1473.

    Article  Google Scholar 

  40. W.B. Lee, K.S. Bang and S.B. Jung, Effects of Intermetallic Compound on the Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints during Annealing[J], J. Alloy. Compd., 2005, 390, p 212–220.

    Article  CAS  Google Scholar 

  41. G. Heness, R. Wuhrer and W.Y. Yeung, Interfacial Strength Development of Roll-Bonded Aluminium/Copper Metal Laminates[J], Mater. Sci. Eng. A, 2008, 483–484, p 740–742.

    Article  Google Scholar 

  42. R. Pretorius, A.M. Vredenberg, F.W. Saris et al., Prediction of Phase Formation Sequence and Phase Stability in Binary Metal-Aluminium Thin-Film Systems using the Effective Heat of Formation[J], J. Appl. Phys., 1991, 70(7), p 3636–3646.

    Article  CAS  Google Scholar 

  43. R. Pretorius, T.K. Marais and C.C. Theron, Thin Film Compound Phase Formation Sequence: An Effective Heat of Formation Model[J], Mater. Sci. Rep., 1993, 10(1–2), p 1–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks for the research grants supported by the Anhui Key Laboratory of metallurgical engineering and comprehensive utilization of resources open fund (Grant Number SKF22-04) and Scientific research project of Natural Science Foundation of Anhui University (Grant Number KJ2020A0272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingya Zhang.

Ethics declarations

Conflict of interest

All participating authors declare that they have no conflict of interest in this work. We once again solemnly declare that there is no conflict of interest with the submitted work, such as commercial interest or ancillary interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Li, G., Xu, G. et al. Evolution and Formation Mechanism of Interface Structure in Rolled Mg-Al Clad Sheet. J. of Materi Eng and Perform 32, 7248–7259 (2023). https://doi.org/10.1007/s11665-022-07629-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07629-z

Keywords

Navigation