Skip to main content
Log in

Computational Thermodynamics-Aided Design of (Cr-Mo-W-V) Steels with Enhanced Corrosion and Abrasion Resistance

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The study evaluates the microstructure, abrasion resistance, and corrosion behavior of newly designed cost-effective (Cr-Mo-W-V) steels. Six steels were designed with the help of computational thermodynamics to achieve a ferritic or duplex matrix with embedded hard carbides. The precursors of alloying elements were two commercial steels, namely HCx® and 316L. The wet abrasion tests and the corrosion tests revealed that the designed Cr-Mo-W-V steels have remarkable abrasion and corrosion resistance compared to the expensive commercial steel used as a precursor (HCx®). The least alloyed steel had the highest abrasion resistance owing to its low matrix/carbide hardness ratio and the presence of small intragranular carbides that led to a greater influence of the microstructure on the abrasion resistance than the hardness. Nickel played a key role in the formation of a passivation layer before the onset of corrosion; however, it must be added along with chromium and molybdenum for improved performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© of (a) HCx®, (b) 316L

Fig. 2

©: (a) 5%, (b) 10%, (c) 15%, (d) 20%, (e) 30%, (f) 50%. Nominal carbon content indicated by the dotted line

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stachowiak GW, Batchelor AW. Abrasive, erosive and cavitaion wear. Eng. Tribol., 2006, p. 501–50. https://doi.org/10.1016/B978-075067836-0/50012-2.

  2. D. Hamm, C.O. Olsson and, D. Landolt, Effect of Chromium Content and Sweep Rate on Passive Film Growth on Iron-Chromium Alloys Studied by EQCM and XPS, Corros. Sci, 2002, 44, p 1009–1025. https://doi.org/10.1016/S0010-938X(01)00126-3

    Article  CAS  Google Scholar 

  3. Pistorius PC. 2012 Accelerated Corrosion of Stainless Steel in Thiocyanate ‐ Containing Solutions PP 104

  4. Y. Yu, S. Shironita, K. Souma and, M. Umeda, Effect of Chromium Content on the Corrosion Resistance of Ferritic Stainless Steels in Sulfuric Acid Solution, Heliyon, 2018, 4, e00958. https://doi.org/10.1016/j.heliyon.2018.e00958

    Article  Google Scholar 

  5. N. Espallargas, P.D. Jakobsen, L. Langmaack and, F.J. Macias, Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling, Rock. Mech. Rock. Eng, 2014, 48, p 261–275. https://doi.org/10.1007/s00603-014-0552-6

    Article  Google Scholar 

  6. W.S. Labiapari, M.A.N. Ardila, H.L. Costa and, J.D.B. de Mello, Micro Abrasion-Corrosion of Ferritic Stainless Steels, Wear, 2017, 376–377, p 1298–1306. https://doi.org/10.1016/j.wear.2017.01.083

    Article  CAS  Google Scholar 

  7. J.O. Bello, R.J.K. Wood and, J.A. Wharton, Synergistic Effects of Micro-Abrasion-Corrosion of UNS S30403, S31603 and S32760 Stainless Steels, Wear, 2007, 263, p 149–159. https://doi.org/10.1016/j.wear.2006.12.044

    Article  CAS  Google Scholar 

  8. M. Maher, I. Iraola-Arregui, H. Ben Youcef, B. Rhouta and, V. Trabadelo, The Synergistic Effect of Wear-Corrosion in Stainless Steels: A Review, Mater. Today. Proc, 2021 https://doi.org/10.1016/j.matpr.2021.05.010

    Article  Google Scholar 

  9. M. Arikan, H. Çimenoğlu and, E. Kayali, The Effect of Titanium on the Abrasion Resistance of 15Cr–3Mo white Cast Iron, Wear, 2001, 247, p 231–235. https://doi.org/10.1016/S0043-1648(00)00523-8

    Article  CAS  Google Scholar 

  10. J.D. Bressan and R.A. Schopf, Abrasive wear Resistance of Tool Steels Evaluated by the Pin-On-Disc Testing, AIP. Conf. Proc, 2011, 1353, p 1753–1758. https://doi.org/10.1063/1.3589769

    Article  CAS  Google Scholar 

  11. E. Gordo, N. Khattab and, J.M. Torralba, Sinterability and Properties of HCx PM Steel Diluted with Stainless Steels, Rev. Metal, 2010 https://doi.org/10.3989/revmetalm.2005.v41.iextra.1005

    Article  Google Scholar 

  12. X.G. Lu, Z. Wang, Y. Cui and, Z. Jin, Computational Thermodynamics, Computational Kinetics, and Materials Design, Chin. Sci. Bull, 2014, 59, p 1662–1671. https://doi.org/10.1007/s11434-014-0219-4

    Article  Google Scholar 

  13. Javaheri V. 2019 Design, Thermomechanical Processing and Induction Hardening of a New Medium-carbon Steel Microalloyed with Niobium. https://doi.org/10.13140/RG.2.2.24058.85446.

  14. E. Costa and A. Silva, Using Computational Thermodynamics to Understand the Evolution of Solidification Segregation During Steel Processing, J. Phase. Equilibria. Diffus, 2020 https://doi.org/10.1007/s11669-020-00812-6

    Article  Google Scholar 

  15. X. Xu, W. Xu, F.H. Ederveen and, S. van der Zwaag, Design of Low Hardness Abrasion Resistant Steels, Wear, 2013, 301, p 89–93. https://doi.org/10.1016/j.wear.2013.01.002

    Article  CAS  Google Scholar 

  16. C. Zhang, F. Zhang, S. Chen and, W. Cao, Computational Thermodynamics Aided High-Entropy Alloy Design, Jom, 2012, 64, p 839–845. https://doi.org/10.1007/s11837-012-0365-6

    Article  CAS  Google Scholar 

  17. R. Shi and A.A. Luo, Applications of CALPHAD Modeling and Databases in Advanced Lightweight Metallic Materials, Calphad. Comput. Coupling. Phase. Diagrams. Thermochem, 2018, 62, p 1–17. https://doi.org/10.1016/j.calphad.2018.04.009

    Article  CAS  Google Scholar 

  18. Z. Sun, Y. Ma, D. Ponge, S. Zaefferer, E.A. Jägle, B. Gault et al., Thermodynamics-Guided Alloy and Process Design for Additive Manufacturing, Nat. Commun, 2022, 13, p 1–12. https://doi.org/10.1038/s41467-022-31969-y

    Article  CAS  Google Scholar 

  19. B. Schaffernak and H. Cerjak, Design of Improved Heat Resistant Materials by Use of Computational Thermodynamics, VTT. Symp (Valtion Tek Tutkimuskeskus), 2001, 25, p 365–378.

    Google Scholar 

  20. A. Kroupa, Modelling of Phase Diagrams and Thermodynamic Properties Using Calphad Method - Development of Thermodynamic Databases, Comput. Mater. Sci, 2013, 66, p 3–13. https://doi.org/10.1016/j.commatsci.2012.02.003

    Article  CAS  Google Scholar 

  21. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie et al., The PANDAT Software Package and its Applications, Calphad. Comput. Coupling. Phase. Diagram. Thermochem, 2002, 26, p 175–188. https://doi.org/10.1016/S0364-5916(02)00034-2

    Article  CAS  Google Scholar 

  22. J.C. Zhao and, M.F. Henry, CALPHAD - Is it Ready for Superalloy Design?, Adv. Eng. Mater, 2002, 4, p 501–508. https://doi.org/10.1002/1527-2648(20020717)4:7%3c501::AID-ADEM501%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  23. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi et al., FactSage Thermochemical Software and Databases, 2010–2016, Calphad. Comput. Coupling. Phase. Diagram. Thermochem, 2016, 54, p 35–53. https://doi.org/10.1016/j.calphad.2016.05.002

    Article  CAS  Google Scholar 

  24. R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson and, S.M. Martin, MTDATA - Thermodynamic and Phase Equilibrium Software from the National Physical Laboratory, Calphad. Comput. Coupling. Phase. Diagram. Thermochem, 2002, 26, p 229–271. https://doi.org/10.1016/S0364-5916(02)00036-6

    Article  CAS  Google Scholar 

  25. K. Shobu, CaTCalc: new Thermodynamic Equilibrium Calculation Software, Calphad. Comput. Coupling. Phase. Diagram. Thermochem, 2009, 33, p 279–287. https://doi.org/10.1016/j.calphad.2008.09.015

    Article  CAS  Google Scholar 

  26. P.F. Shi, A. Engström, B. Sundman and, J. Agren, Thermodynamic Calculations and Kinetic Simulations of Some Advanced Materials, Mater. Sci. Forum, 2011, 675(677), p 961–974. https://doi.org/10.4028/www.scientific.net/MSF.675-677.961

    Article  CAS  Google Scholar 

  27. M. Dadfar, M.H. Fathi, F. Karimzadeh, M.R. Dadfar and, A. Saatchi, Effect of TIG Welding on Corrosion Behavior of 316L Stainless Steel, Mater. Lett, 2007, 61, p 2343–2346. https://doi.org/10.1016/j.matlet.2006.09.008

    Article  CAS  Google Scholar 

  28. F.J.G. Silva, J. Santos and, R. Gouveia, Dissolution of Grain Boundary Carbides by the Effect of Solution Annealing Heat Treatment and Aging Treatment on Heat-resistant Cast Steel HK30, Metal. (Basel), 2017 https://doi.org/10.3390/met7070251

    Article  Google Scholar 

  29. A. Sundström, J. Rendón and, M. Olsson, Wear Behaviour of Some Low Alloyed Steels Under Combined Impact/abrasion Contact Conditions, Wear, 2001, 250, p 744–754. https://doi.org/10.1016/S0043-1648(01)00712-8

    Article  Google Scholar 

  30. A.R. Chintha, Metallurgical Aspects of Steels Designed to Resist Abrasion, and Impact-abrasion Wear, Mater Sci Technol, 2019, 35, p 1133–1148. https://doi.org/10.1080/02670836.2019.1615669

    Article  CAS  Google Scholar 

  31. V. Ratia, K. Valtonen, A. Kemppainen and, V.T. Kuokkala, High-stress Abrasion and Impact-abrasion Testing of Wear Resistant Steels, Tribol. Online, 2013, 8, p 152–161. https://doi.org/10.2474/trol.8.152

    Article  Google Scholar 

  32. M. Orečný, M. Buršák, M. Šebek and, L. Falat, Influence of Hardness, Matrix and Carbides in Combination with Nitridation on Abrasive Wear Resistance of X210Cr12 Tool Steel, Metal. (Basel), 2016 https://doi.org/10.3390/met6100236

    Article  Google Scholar 

  33. L. Bourithis, G.D. Papadimitriou and, J. Sideris, Comparison of Wear Properties of Tool Steels AISI D2 and O1 with the Same Hardness, Tribol. Int, 2006, 39, p 479–489. https://doi.org/10.1016/j.triboint.2005.03.005

    Article  CAS  Google Scholar 

  34. J. Rendón and M. Olsson, Abrasive Wear Resistance of Some Commercial Abrasion Resistant Steels Evaluated by Laboratory Test Methods, Wear, 2009, 267, p 2055–2061. https://doi.org/10.1016/j.wear.2009.08.005

    Article  CAS  Google Scholar 

  35. P.J. Mutton and J.D. Watson, Some Effects of Microstructure on the Abrasion Resistance of Metals, Wear, 1978, 48, p 385–398. https://doi.org/10.1016/0043-1648(78)90234-X

    Article  CAS  Google Scholar 

  36. K. Singh, R.K. Khatirkar and, S.G. Sapate, Microstructure Evolution and Abrasive Wear Behavior of D2 Steel, Wear, 2015, 328–329, p 206–216. https://doi.org/10.1016/j.wear.2015.02.019

    Article  CAS  Google Scholar 

  37. Q.B. Nguyen, C.Y.H. Lim, V.B. Nguyen, Y.M. Wan, B. Nai, Y.W. Zhang et al., Slurry Erosion Characteristics and Erosion Mechanisms of Stainless Steel, Tribol Int, 2014, 79, p 1–7. https://doi.org/10.1016/j.triboint.2014.05.014

    Article  CAS  Google Scholar 

  38. L. Xu, S. Wei, Y. Ji, G. Zhang, J. Li and, R. Long, Effect of Carbon on Frictional Wear Behaviours of High Vanadium High Speed Steel Under Dry Sliding Condition, Mater. Sci. Forum, 2010, 654–656, p 370–373. https://doi.org/10.4028/www.scientific.net/MSF.654-656.370

    Article  CAS  Google Scholar 

  39. V. Javaheri, D. Porter and, V.T. Kuokkala, Slurry Erosion of Steel – Review of Tests, Mechanisms and Materials, Wear, 2018, 408–409, p 248–273. https://doi.org/10.1016/j.wear.2018.05.010

    Article  CAS  Google Scholar 

  40. C.B. von der Ohe, R. Johnsen and, N. Espallargas, Modeling the Multi-degradation Mechanisms of Combined Tribocorrosion Interacting with Static and Cyclic Loaded Surfaces of Passive Metals Exposed to Seawater, Wear, 2010, 269, p 607–616. https://doi.org/10.1016/j.wear.2010.06.010

    Article  CAS  Google Scholar 

  41. C. Trevisiol, A. Jourani and, S. Bouvier, Effect of Hardness, Microstructure, Normal Load and Abrasive Size on Friction and on Wear Behaviour of 35NCD16 Steel, Wear, 2017, 388, p 101–111. https://doi.org/10.1016/j.wear.2017.05.008

    Article  CAS  Google Scholar 

  42. K. Wang and D. Li, Formation of Core (M7C3)-Shell (M23C6) Structured Carbides in White Cast Irons: A Thermo-Kinetic Analysis, Comput. Mater. Sci, 2018, 154, p 111–121. https://doi.org/10.1016/j.commatsci.2018.07.032

    Article  CAS  Google Scholar 

  43. Cowan RL, Tedmon CS. Intergranular Corrosion of Iron-Nickel-Chromium Alloys. Adv Corros Sci Technol 1973, p. 293–400. https://doi.org/10.1007/978-1-4615-8258-8_3.

  44. J. Chen, Q. Xiao, Z. Lu, X. Ru, G. Han, Y. Tian et al., The Effects of Prior-deformation on Anodic Dissolution Kinetics and Pitting Behavior of 316L Stainless Steel, Int. J. Electrochem. Sci, 2016, 11, p 1395–1415.

    Article  CAS  Google Scholar 

  45. Y. Ait Albrimi, A. Eddib, J. Douch, Y. Berghoute, M. Hamdani and, R.M. Souto, Electrochemical Behaviour of AISI 316 Austenitic Stainless Steel in Acidic Media Containing Chloride Ions, Int. J. Electrochem. Sci, 2011, 6, p 4614–4627.

    Article  CAS  Google Scholar 

  46. A. Fattah-Alhosseini and S. Vafaeian, Effect of solution pH on the electrochemical behaviour of AISI 304 Austenitic and AISI 430 Ferritic Stainless Steels in Concentrated Acidic Media, Egypt. J. Pet, 2015, 24, p 333–341. https://doi.org/10.1016/j.ejpe.2015.07.016

    Article  Google Scholar 

  47. B. Jegdić, D.M. Dražić and, J.P. Popić, Corrosion Potential of 304 Stainless Steel in Sulfuric Acid, J. Serbian. Chem. Soc, 2006, 71, p 543–551. https://doi.org/10.2298/JSC0605543J

    Article  CAS  Google Scholar 

  48. H. Katsuya, A. Takashi, Y. Takashi, T. Yutaka, N. Koe and, H. Yuzo, Effect of Al Si Mo on Passivation Characteristics of Fe-10Cr Alloys, Mater. Tran, 2001, 42, p 1723–1730.

    Article  Google Scholar 

  49. M.F. Ashby and, D.R.H. Jones, Steels 2—Alloy Steels, Eng. Mater, 2013, 2, p 221–236. https://doi.org/10.1016/b978-0-08-096668-7.00013-9

    Article  Google Scholar 

  50. N. Rujeerapaiboon, N. Anuwongnukroh, S. Dechkunakorn and, M. Jariyaboon, The Effects of Different Bending Techniques on Corrosion Resistance and Nickel Release of Superelastic Orthodontic NiTi Archwires, IOP. Conf. Ser. Mater. Sci. Eng, 2017 https://doi.org/10.1088/1757-899X/191/1/012038

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the OCP foundation for the financial support through the doctoral program from Mohammed VI Polytechnic University. The help of CEIT-BRTA research center (Spain) in performing the experiments is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Trabadelo.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maher, M., Iraola-Arregui, I., Idouhli, R. et al. Computational Thermodynamics-Aided Design of (Cr-Mo-W-V) Steels with Enhanced Corrosion and Abrasion Resistance. J. of Materi Eng and Perform 32, 7297–7310 (2023). https://doi.org/10.1007/s11665-022-07621-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07621-7

Keywords

Navigation