Skip to main content
Log in

Modeling Thermal Conductivity of Al-Ni, Al-Fe, and Al-Co Spark Plasma Sintered Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Owing to their low density and high thermal conductivity, aluminum and its alloys are being increasing sought and utilized to produce automotive components to dissipate heat and conduct electricity. This study involved preparing spark plasma sintered Al-x wt.% Ni/Fe/Co (x = 0.5, 1.0, 1.5, and 3.0) alloys and developing a microstructural finite element approach to predict their thermal conductivity and validate it with experimental and analytical thermal conductivity calculations. Optical and electron microscopy, porosity and microhardness measurements were used to characterize the spark plasma sintered alloys. The thermal conductivity of Al-Ni/Fe/Co alloys decreased with increasing Ni/Fe/Co content and it ranged from 227 to 155 W/m.K for Al-0.5 to Al-3.0 wt.% Ni/Fe/Co alloys, respectively. The models to predict the thermal conductivity of spark plasma sintered aluminum alloys help explain the microstructural influence on conductivity and enable design of alloys for more demanding thermal/electrical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.R. Davies, Aluminum and Aluminum Alloys, ASM International, Materials Park, 1993.

    Google Scholar 

  2. J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51(19), p 5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023

    Article  CAS  Google Scholar 

  3. P. Olafsson, R. Sandstrom, and Å. Karlsson, Comparison of Experimental, Calculated and Observed Values for Electrical and Thermal Conductivity of Aluminium Alloys, J. Mater. Sci., 1997, 32(16), p 4383–4390. https://doi.org/10.1023/A:1018680024876

    Article  CAS  Google Scholar 

  4. W. Tian, S. Li, X. Chen, J. Liu, and M. Yu, Intergranular Corrosion of Spark Plasma Sintering Assembled Bimodal Grain Sized AA7075 Aluminum Alloys, Corros. Sci., 2016, 107, p 211–224. https://doi.org/10.1016/j.corsci.2016.02.034

    Article  CAS  Google Scholar 

  5. Q. Xue, The Influence of Particle Shape and Size on Electric Conductivity of Metal–polymer Composites, Eur. Polymer J., 2004, 40, p 323–327. https://doi.org/10.1016/j.eurpolymj.2003.10.011

    Article  CAS  Google Scholar 

  6. R.L. Hamilton and O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Ind. Eng. Chem. Fundam., 1962, 1(3), p 187–191. https://doi.org/10.1021/i160003a005

    Article  CAS  Google Scholar 

  7. C.W. Kim, J.I. Cho, S.W. Choi, Y.C. Ki, C.S. Kang, The Effect of Alloying Elements on Thermal Conductivity and Casting Characteristic in High Pressure Die Casting of Aluminum Alloy, in ICAA13: 13th International Conference on Aluminum Alloys, 2012, pp 237-242 .https://doi.org/10.1002/9781118495292.ch37

  8. K. Schroder Ed., CRC Handbook of Electrical Resistivities of Binary Metallic Alloys, 1st ed. CRC Press, Boca Raton, 1983

    Google Scholar 

  9. C. Su, D. Li, A.A. Luo, T. Ying, and X. Zeng, Effect of Solute Atoms and Second Phases on the Thermal Conductivity of Mg-RE Alloys: A Quantitative Study, J. Alloy. Compd., 2018, 747, p 431–437. https://doi.org/10.1016/j.jallcom.2018.03.070

    Article  CAS  Google Scholar 

  10. A. Bilušić, I. Smiljanić, Ž Bihar, D. Stanić, and A. Smontara, Heat Conduction in Complex Metallic Alloys, Croat. Chem. Acta, 2010, 83(1), p 21–25.

    Google Scholar 

  11. R. Lumley, N. Deeva, R. Larsen, J. Gembarovic, and J. Freeman, The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings, Metall. and Mater. Trans. A., 2013, 44, p 1074–1086. https://doi.org/10.1007/s11661-012-1443-7

    Article  CAS  Google Scholar 

  12. J. Chen, H. Wang, P. Xie, and H. Najm, Analysis of Thermal Conductivity of Porous Concrete using Laboratory Measurements and Microstructure Models, Constr. Build. Mater., 2019, 218, p 90–98. https://doi.org/10.1016/j.conbuildmat.2019.05.120

    Article  Google Scholar 

  13. J.E. Hatch, Aluminum: Properties and Physical Metallurgy, ASM International, Materials Park, 1984.

    Google Scholar 

  14. P.G. Klemens and R.K. Williams, Thermal Conductivity of Metals and Alloys, Int. Metals Rev., 1986, 31(1), p 197–215. https://doi.org/10.1179/imtr.1986.31.1.197

    Article  CAS  Google Scholar 

  15. Y.H. Cho, H.W. Kim, J.M. Lee, and M.S. Kim, A New Approach to the Design of a Low Si-added Al-Si Casting Alloy for Optimising Thermal Conductivity and Fluidity, J. Mater. Sci., 2015, 50(22), p 7271–7281. https://doi.org/10.1007/s10853-015-9282-8

    Article  CAS  Google Scholar 

  16. T.H. Bauer, A General Analytical Approach Toward the Thermal Conductivity of Porous Media, Int. J. Heat Mass Transf., 1993, 36(17), p 4181–4191. https://doi.org/10.1016/0017-9310(93)90080-P

    Article  CAS  Google Scholar 

  17. E. Behrens, Thermal Conductivities of Composite Materials, J. Compos. Mater., 1968, 2(1), p 2–17. https://doi.org/10.1177/002199836800200101

    Article  Google Scholar 

  18. R.C. Progelhof, J.L. Throne, and R.R. Ruetsch, Methods for Predicting the Thermal Conductivity of Composite Systems: A Review, Polym. Eng. Sci., 1976, 16(9), p 615–625. https://doi.org/10.1002/pen.760160905

    Article  CAS  Google Scholar 

  19. J. Wang, J.K. Carson, M.F. North, and D.J. Cleland, A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials, Int. J. Heat Mass Transf., 2006, 49(17), p 3075–3083. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007

    Article  Google Scholar 

  20. G. Zhang, Y. Xia, H. Wang, Y. Tao, G. Tao, S. Tu, and H. Wu, A Percolation Model of Thermal Conductivity for Filled Polymer Composites, J. Compos. Mater., 2010, 44(8), p 963–970. https://doi.org/10.1177/0021998309349690

    Article  CAS  Google Scholar 

  21. J. Wang, J.K. Carson, M.F. North, and D.J. Cleland, A New Structural Model of Effective Thermal Conductivity for Heterogeneous Materials with Co-continuous Phases, Int. J. Heat Mass Transf., 2008, 51(9–10), p 2389–2397. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.028

    Article  CAS  Google Scholar 

  22. F. Achard, La publication duTreatise on Electricity and Magnetism de James Clerk Maxwell, Rev. Synth., 1998, 119(4), p 511–544. https://doi.org/10.1007/BF03181392

    Article  Google Scholar 

  23. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, E.R. Pinatel, and P.J. Uggowitzer, The Effect of Main Alloying Elements on the Physical Properties of Al-Si Foundry Alloys, Mater. Sci. Eng., A, 2013, 560, p 481–491. https://doi.org/10.1016/j.msea.2012.09.093

    Article  CAS  Google Scholar 

  24. J.K. Chen, H.Y. Hung, C.F. Wang, and N.K. Tang, Thermal and Electrical Conductivity in Al-Si/Cu/Fe/Mg Binary and Ternary Al Alloys, J. Mater. Sci., 2015, 50(16), p 5630–5639. https://doi.org/10.1007/s10853-015-9115-9

    Article  CAS  Google Scholar 

  25. W. Yang, K. Peng, L. Zhou, J. Zhu, and D. Li, Finite Element Simulation and Experimental Investigation on Thermal Conductivity of Diamond/aluminium Composites with Imperfect Interface, Comput. Mater. Sci., 2014, 83, p 375–380. https://doi.org/10.1016/j.commatsci.2013.11.059

    Article  CAS  Google Scholar 

  26. L. Zhang, H. Wang, and Z. Ren, Computational Analysis of Thermal Conductivity of Asphalt Mixture Using Virtually Generated Three-Dimensional Microstructure, J. Mater. Civ. Eng., 2017, 29(12), p 04017234. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002081

    Article  Google Scholar 

  27. A. Eldesouky, M. Johnsson, H. Svengren, M.M. Attallah, and H.G. Salem, Effect of Grain Size Reduction of AA2124 Aluminum Alloy Powder Compacted by Spark Plasma Sintering, J. Alloy. Compd., 2014, 609, p 215–221. https://doi.org/10.1016/j.jallcom.2014.04.136

    Article  CAS  Google Scholar 

  28. A.K. Srivastav, N. Chawake, D. Yadav, N.S. Karthiselva, and B.S. Murty, Localized Pore Evolution Assisted Densification during Spark Plasma Sintering of Nanocrystalline W-5wt.%Mo Alloy, Scripta Materialia, 2019, 159, p 41–45. https://doi.org/10.1016/j.scriptamat.2018.09.013

    Article  CAS  Google Scholar 

  29. G. Choi, H.S. Kim, K. Lee, S.H. Park, J. Cha, I. Chung, and W.B. Lee, Study on Thermal Conductivity and Electrical Resistivity of Al-Cu Alloys Obtained by Boltzmann Transport Equation and First-principles Simulation: Semi-empirical Approach, J. Alloy. Compd., 2017, 727, p 1237–1242. https://doi.org/10.1016/j.jallcom.2017.08.156

    Article  CAS  Google Scholar 

  30. M. Kumagai, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka, Electronic Structure and Thermoelectric Properties of Pseudogap Intermetallic Compound Al5Co2, J. Japan Inst. Metals Mater., 2017, 81, p 55–59. https://doi.org/10.2320/jinstmet.J2016053

    Article  CAS  Google Scholar 

  31. K. Mizuuchi, K. Inoue, Y. Agari, Y. Morisada, M. Sugioka, M. Tanaka, T. Takeuchi, M. Kawahara, and Y. Makino, Thermal Conductivity of Diamond Particle Dispersed Aluminum Matrix Composites Fabricated in Solid–liquid Co-existent State by SPS, Compos. B Eng., 2011, 42(5), p 1029–1034. https://doi.org/10.1016/j.compositesb.2011.03.028

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank NSERC (NSERC, RGPIN‐2019‐04169) and the University of Guelph for financial support. The authors also thank M. Sharma, M. Bolan, A. Zimmer and A. Prasad for help with experimentation and data collection. The authors also thank Dr. D. Soldatov and Dr. G. Szymanski at the x-ray facility in the Chemistry department at the University of Guelph for assistance with the XRD experiments. Appreciation also to Dr. J. Leitch at the University of Guelph for SEM support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Elsayed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagtani, P., Bichler, L., Bardelcik, A. et al. Modeling Thermal Conductivity of Al-Ni, Al-Fe, and Al-Co Spark Plasma Sintered Alloys. J. of Materi Eng and Perform 32, 6821–6832 (2023). https://doi.org/10.1007/s11665-022-07612-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07612-8

Keywords

Navigation