Skip to main content
Log in

Modifications in the Surface of Titanium Substrate and the Incorporation of an Essential Oil for Biomaterial Application

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Metallic prostheses are the most used for the partial or total recovery of damaged organs and tissues, with titanium being the most applied material. Aiming to enhance the device to be implanted, the application of polymeric and ceramic coatings has been studied. The use of polycaprolactone (PCL) has shown promising characteristics, given its biodegradability, and the addition of hydroxyapatite (HA) has favored osseointegration. Nevertheless, complications related to infectious processes are recurrent to surgical procedures. In this context, the present study proposes the manufacture of a functional hybrid material for prosthetic application. As a strategy to minimize postsurgical bacterial contamination, this work proposes the incorporation of Melaleuca alternifolia essential oil (TTO) as a natural bactericide, in polycaprolactone and hydroxyapatite coatings in a titanium substrate. The samples were characterized to demonstrate that the coatings were performed on the whole surface of the titanium and that the incorporation of the essential oil did not alter the morphology of the polymeric film. The surface morphological evaluation performed after the corrosion assays in simulated body fluid indicated there was PCL degradation, being more intense for the samples containing HA, deriving from the alteration in the polymeric coating hydrophilicity combined with the bioceramic and the increase in surface porosity. Simultaneously to the process of polymeric layer degradation, it is suggested that there will be a release of the TTO incorporated in PCL and the formation of overlapping apatitic layers. Therefore, the results demonstrated that the proposed coatings may contribute to biocompatibility and the osseointegrative process, indicating the potentiality for application in orthopedic medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Dolcimascolo, G. Calabrese, S. Conoci, and R. Parenti, Innovative Biomaterials for Tissue Engineering. In Biomaterial-supported Tissue Reconstruction or Regeneration (IntechOpen, 2019). doi:https://doi.org/10.5772/intechopen.83839

  2. I.C.P. Rodrigues, A. Kaasi, R. Maciel Filho, A.L. Jardini, and L.P. Gabriel, Cardiac Tissue Engineering: Current State-of-the-Art Materials, Cells and Tissue Formation, Einstein (São Paulo), 2018, 16, p eRB4538.

    Google Scholar 

  3. M.S.B. Reddy, D. Ponnamma, R. Choudhary, and K.K. Sadasivuni, A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds, Polym. (Basel), 2021, 13, p 1105.

    CAS  Google Scholar 

  4. M.N. Collins et al., Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering, Adv. Funct. Mater., 2021, 31, p 2010609.

    CAS  Google Scholar 

  5. G.K. Sharma, V. Kukshal, D. Shekhawat, and A. Patnaik, Fabrication and Characterization of Metallic Biomaterials in Medical Applications. In Advanced Materials and Manufacturing Processes 95–105 (CRC Press, 2021). https://doi.org/10.1201/9781003093213-6

  6. U. Filipović, R.G. Dahmane, S. Ghannouchi, A. Zore, and K. Bohinc, Bacterial Adhesion on Orthopedic Implants, Adv. Colloid Interface Sci., 2020, 283, p 102228.

    Google Scholar 

  7. S. Ali et al., Biocompatibility and Corrosion Resistance of Metallic Biomaterials, Corros. Rev., 2020, 38, p 381–402.

    CAS  Google Scholar 

  8. W. Liu, S. Liu, and L. Wang, Surface Modification of Biomedical Titanium Alloy: Micromorphology Microstructure Evolution and Biomedical Applications, Coatings, 2019, 9, p 249.

    CAS  Google Scholar 

  9. M.H. Prado da Silva, Osteoinductive Biomaterials, Ref. Module Mater. Sci. Mater. Eng., 2016 https://doi.org/10.1016/B978-0-12-803581-8.04087-X

    Article  Google Scholar 

  10. Y. Chen et al., Mechanical Properties and Biocompatibility of Porous Titanium Scaffolds for Bone Tissue Engineering, J. Mech. Behav. Biomed. Mater., 2017, 75, p 169–174.

    CAS  Google Scholar 

  11. E.V. Melnik et al., In Vitro Degradation Behaviour of Hybrid Electrospun Scaffolds of Polycaprolactone and strontium-Containing Hydroxyapatite Microparticles, Polym. Degrad. Stab., 2019, 167, p 21–32.

    CAS  Google Scholar 

  12. Y. Chen, D. Kent, M. Bermingham, A. Dehghan-Manshadi, and M. Dargusch, Manufacturing of Biocompatible Porous Titanium Scaffolds Using a Novel Spherical Sugar Pellet Space Holder, Mater. Lett., 2017, 195, p 92–95.

    CAS  Google Scholar 

  13. M.T. Frassica and M.A. Grunlan, Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair, ACS Biomater. Sci. Eng., 2020, 6, p 4324–4336.

    CAS  Google Scholar 

  14. B. Safari, M. Aghazadeh, L. Roshangar, A. Aghanejad, and S. Davaran, A Bioactive Porous Scaffold Containing Collagen/Phosphorous-Modified Polycaprolactone for Osteogenesis of Adipose-Derived Mesenchymal Stem Cells, Eur. Polym. J., 2022, 171, p 111220.

    CAS  Google Scholar 

  15. X. Ma et al., Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics, Nanomaterials, 2022, 12, p 47.

    CAS  Google Scholar 

  16. P.X. Ma, Biomimetic Materials for Tissue Engineering, Adv. Drug Deliv. Rev., 2008, 60, p 184–198.

    CAS  Google Scholar 

  17. M.F. Mohd Yusoff, M.R. Abdul Kadir, N. Iqbal, M.A. Hassan, and R. Hussain, Dipcoating of Poly (ε-Caprolactone)/Hydroxyapatite Composite Coating on Ti6Al4V for Enhanced Corrosion Protection, Surf. Coatings Technol., 2014, 245, p 102–107.

    CAS  Google Scholar 

  18. N.S. Manam et al., Study of Corrosion in Biocompatible Metals for Implants: A Review, J. Alloys Compd., 2017, 701, p 698–715.

    CAS  Google Scholar 

  19. I.E. Glazov et al., Effect of Platelet-Poor Plasma Additive on the Formation of Biocompatible Calcium Phosphates, Mater. Today Commun., 2021, 27, p 102224.

    CAS  Google Scholar 

  20. V.K. Krut’ko et al., Physicochemical Properties and Structure of the Bone Matrix in Simulated Tuberculous Osteitis, Tech. Phys., 2019, 64, p 121–126.

    Google Scholar 

  21. C.C. Ferreira et al., Titanium Biomimetically Coated With Hydroxyapatite, Silver Nitrate and Polycaprolactone, for Use In Biomaterials (Biomedicine), Mater. Res., 2019, 22, p 20190177.

    Google Scholar 

  22. S. Wang et al., Tuning Pore Features of Mineralized Collagen/PCL Scaffolds for Cranial Bone Regeneration in a Rat Model, Mater. Sci. Eng. C, 2020, 106, p 110186.

    CAS  Google Scholar 

  23. A. Kiran, T. S. Kumar, R. Sanghavi, M. Doble, and S. Ramakrishna, Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiO2 Nanocomposite Coatings. Nanomaterials, 2018, 8, p 860.

    Google Scholar 

  24. N. Singh, U. Batra, K. Kumar, and A. Mahapatro, Investigating TiO2–HA–PCL Hybrid Coating as an Efficient Corrosion Resistant Barrier of ZM21 Mg Alloy, J. Magnes. Alloy., 2021, 9, p 627–646.

    CAS  Google Scholar 

  25. Z. Khatoon, C.D. McTiernan, E.J. Suuronen, T.-F. Mah, and E.I. Alarcon, Bacterial Biofilm Formation on Implantable Devices and Approaches to its Treatment and Prevention, Heliyon, 2018, 4, p e01067.

    Google Scholar 

  26. J. Raphel, M. Holodniy, S.B. Goodman, and S.C. Heilshorn, Multifunctional Coatings to Simultaneously Promote Osseointegration and Prevent Infection of Orthopaedic Implants, Biomaterials, 2016, 84, p 301–314.

    CAS  Google Scholar 

  27. O. Bazaka et al., Effect of Titanium Surface Topography on Plasma Deposition of Antibacterial Polymer Coatings, Appl. Surf. Sci., 2020, 521, p 146375.

    CAS  Google Scholar 

  28. W.-L. Low, K. Kenward, S.T. Britland, M.C. Amin, and C. Martin, Essential Oils and Metal Ions as Alternative Antimicrobial Agents: A Focus on Tea Tree Oil and Silver, Int. Wound J., 2017, 14, p 369–384.

    Google Scholar 

  29. U.T. Khatoon, G.V.S. Nageswara Rao, K.M. Mohan, A. Ramanaviciene, and A. Ramanavicius, Antibacterial and Antifungal Activity of Silver Nanospheres Synthesized by Tri-Sodium Citrate Assisted Chemical Approach, Vacuum, 2017, 146, p 259–265.

    CAS  Google Scholar 

  30. U.T. Khatoon, G.V.S.N. Rao, M.K. Mohan, A. Ramanaviciene, and A. Ramanavicius, Comparative Study of Antifungal Activity of Silver and gold Nanoparticles Synthesized by Facile Chemical Approach, J. Environ. Chem. Eng., 2018, 6, p 5837–5844.

    CAS  Google Scholar 

  31. J. Baptiste Hzounda Fokou, P. Michel Jazet Dongmo, and F. Fekam Boyom, Essential Oil’s Chemical Composition and Pharmacological Properties, Essent. Oils Oils Nat., 2020 https://doi.org/10.5772/intechopen.86573

    Article  Google Scholar 

  32. L.G. Mugao, B.M. Gichimu, P.W. Muturi, and S.T. Mukono, Characterization of the Volatile Components of Essential Oils of Selected Plants in Kenya, Biochem. Res. Int., 2020, 2020, p 1–8.

    Google Scholar 

  33. P.M. Maquera-Huacho et al., In Vitro Antibacterial and Cytotoxic Activities of Carvacrol and Terpinen-4-ol Against Biofilm Formation on Titanium Implant Surfaces, Biofouling, 2018, 34, p 699–709.

    CAS  Google Scholar 

  34. N. Puvača, I. Čabarkapa, V. Bursić, A. Petrović, and M. Aćimović, Antimicrobial, Antioxidant and Acaricidal Properties of Tea Tree (Melaleuca alternifolia), Technol. Eng. Manag., 2018, 1, p 29–38.

    Google Scholar 

  35. T. Kokubo and S. Yamaguchi, Novel Bioactive Materials Developed by simulated Body Fluid Evaluation: Surface-Modified Ti Metal and its Alloys, Acta Biomater., 2016, 44, p 16–30.

    CAS  Google Scholar 

  36. C.C. Ferreira et al., Improvement of Titanium Corrosion Resistance by Coating with Poly-Caprolactone and Poly-Caprolactone/Titanium Dioxide: Potential Application in Heart Valves, Mater. Res., 2018, 20, p 126–133.

    Google Scholar 

  37. L. Jonášová, F.A. Müller, A. Helebrant, J. Strnad, and P. Greil, Biomimetic Apatite Formation on Chemically Treated Titanium, Biomaterials, 2004, 25, p 1187–1194.

    Google Scholar 

  38. T. Kokubo and H. Takadama, Simulated Body Fluid (SBF) as a Standard Tool to Test the Bioactivity of Implants, Handb. Biominer., 2008, 3, p 97–109.

    Google Scholar 

  39. S. Maher, A. Mazinani, M.R. Barati, and D. Losic, Engineered Titanium Implants for Localized Drug Delivery: Recent Advances and Perspectives of Titania Nanotubes Arrays, Expert Opin. Drug Deliv., 2018, 15, p 1021–1037.

    CAS  Google Scholar 

  40. R. Tejero, E. Anitua, and G. Orive, Toward the Biomimetic Implant Surface: Biopolymers on Titanium-Based Implants for Bone Regeneration, Prog. Polym. Sci., 2014, 39, p 1406–1447.

    CAS  Google Scholar 

  41. G. Schmidmaier et al., Bone Morphogenetic Protein-2 Coating of Titanium Implants Increases Biomechanical Strength and accelerates Bone Remodeling in Fracture Treatment: A Biomechanical and Histological Study in Rats, Bone, 2002, 30, p 816–822.

    CAS  Google Scholar 

  42. V. Zarghami, M. Ghorbani, K.P. Bagheri, and M.A. Shokrgozar, Prevention the Formation of Biofilm on Orthopedic Implants by Melittin Thin Layer on Chitosan/Bioactive Glass/Vancomycin Coatings, J. Mater. Sci. Mater. Med., 2021, 32, p 75.

    CAS  Google Scholar 

  43. D. Ionita et al., Activity of Vancomycin Release from Bioinspired Coatings of Hydroxyapatite or TiO2 Nanotubes, Int. J. Pharm., 2017, 517, p 296–302.

    CAS  Google Scholar 

  44. D. Nancy and N. Rajendran, Vancomycin Incorporated Chitosan/Gelatin Coatings Coupled with TiO2–SrHAP Surface Modified cp-Titanium for Osteomyelitis Treatment, Int. J. Biol. Macromol., 2018, 110, p 197–205.

    CAS  Google Scholar 

  45. M.L. Raganya, N.M. Moshokoa, B. Obadele, P.A. Olubambi, and R. Machaka, The Microstructural and Mechanical Characterization of the β-Type Ti-11.1Mo-10.8Nb Alloy for Biomedical Applications, IOP Conf. Ser. Mater. Sci. Eng., 2019, 655, p 012025.

    CAS  Google Scholar 

  46. Z. Wei, G. Wang, P. Wang, L. Liu, and M. Qi, Crystallization Behavior of Poly(ϵ-Caprolactone)/Tio2 Nanocomposites Obtained by In Situ Polymerization, Polym. Eng. Sci., 2012, 52, p 1047–1057.

    CAS  Google Scholar 

  47. M.V.B. dos Santos, G.T. Feitosa, J.A. Osajima, R.L.P. Santos, and E.C. da Silva Filho, Desenvolvimento de Biomaterial Composto Por Hidroxiapatita e Clorexidina Para Aplicação na Cavidade Oral, Cerâmica, 2019, 65, p 130–138.

    Google Scholar 

  48. A. Rakngarm, Y. Miyashita, and Y. Mutoh, Formation of Hydroxyapatite Layer on Bioactive Ti and Ti-6Al-4V by Simple Chemical Technique, J. Mater. Sci. Mater. Med., 2008, 19, p 1953–1961.

    CAS  Google Scholar 

  49. W. Chen et al., In Vitro Anti-Bacterial and Biological Properties of Magnetron Co-Sputtered Silver-Containing Hydroxyapatite Coating, Biomaterials, 2006, 27, p 5512–5517.

    CAS  Google Scholar 

  50. H. Madupalli, B. Pavan, and M.M.J. Tecklenburg, Carbonate Substitution in the Mineral Component of Bone: Discriminating the Structural Changes, Simultaneously Imposed by Carbonate in Aand B Sites of Apatite, J. Solid State Chem., 2017, 255, p 27.

    CAS  Google Scholar 

  51. D.-H. Kim et al., Preparation and In Vitro and In Vivo Performance of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Microscaffolds as Human Adipose Tissue-Derived Mesenchymal Stem Cell Microcarriers, J. Nanomater., 2013, 2013, p 1–9.

    Google Scholar 

  52. G. Revilla-López et al., Effects of Hydroxyapatite (0001) Ca 2+ /Mg 2+ Substitution on Adsorbed d -Ribose Ring Puckering, RSC Adv., 2016, 6, p 69634–69640.

    Google Scholar 

  53. X. Liu, Y. Mou, S. Wu, and H.C. Man, Synthesis of silver-Incorporated Hydroxyapatite Nanocomposites for Antimicrobial Implant Coatings, Appl. Surf. Sci., 2013, 273, p 748–757.

    CAS  Google Scholar 

  54. D.D.S. Tavares, L.D.O. Castro, G.D.D.A. Soares, G.G. Alves, and J.M. Granjeiro, Synthesis and Cytotoxicity Evaluation of Granular Magnesium Substituted β-Tricalcium Phosphate, J. Appl. Oral Sci., 2013, 21, p 37–42.

    CAS  Google Scholar 

  55. R.M. Silverstein, F.X. Webster, and D. Kiemle, Spectrometric Identification of Organic Compounds, Wiley Interscience, Hoboken, 2005.

    Google Scholar 

  56. M. Catauro, F. Papale, and F. Bollino, Characterization and Biological Properties of TiO2/PCL Hybrid Layers Prepared Via Sol-Gel Dip Coating for Surface Modification of Titanium Implants, J. Non. Cryst. Solids, 2015, 415, p 9–15.

    CAS  Google Scholar 

  57. O. Akhavan and E. Ghaderi, Flash Photo Stimulation of Human Neural Stem Cells on Graphene/TiO2 Heterojunction for Differentiation into Neurons, Nanoscale, 2013, 5, p 10316–10326.

    CAS  Google Scholar 

  58. M.F.C. Coelho et al., Biomimetic Coating on Titanium: Evaluation of Bioactivity and Corrosion, Mater. Res. Express, 2020, 6, p 1265g5.

    Google Scholar 

  59. N. Eliaz, Corrosion of Metallic Biomaterials: A Review, Mater. (Basel), 2019, 12, p 407.

    CAS  Google Scholar 

  60. P.M.D. Serra, A. Espírito-Santo, and M. Magrinho, A steady-State Electrical Model of a Microbial Fuel Cell Through Multiple-Cycle Polarization Curves, Renew. Sustain. Energy Rev., 2020, 117, p 109439.

    CAS  Google Scholar 

  61. B.N. Popov, Basics of Corrosion Measurements. In Corrosion Engineering 181–237 (Elsevier, 2015). doi: https://doi.org/10.1016/B978-0-444-62722-3.00005-7

  62. N. Eliaz and E. Gileadi, Physical Electrochemistry: Fundamentals, Techniques, and Applications, 2nd ed. Wiley, Hoboken, 2018.

    Google Scholar 

  63. L.L. de Sousa et al., Titanium Coating with Hydroxyapatite and Chitosan Doped with Silver Nitrate, Mater. Res., 2018, 20, p 863–868.

    Google Scholar 

  64. J. Matena et al., Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL, Int. J. Mol. Sci., 2015, 16, p 13287–13301.

    CAS  Google Scholar 

  65. H.R. Bakhsheshi-rad et al., Improved Bacteriostatic and Anticorrosion Effects of Polycaprolactone/Chitosan Coated Magnesium Via Incorporation of Zinc Oxide, Mater. (Basel), 2021, 14, p 1930.

    CAS  Google Scholar 

  66. S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, Biodegradable magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications, Mater. Sci. Eng. C, 2016, 68, p 948–963.

    CAS  Google Scholar 

  67. A. Abdal-Hay, M.G. Hwang, and J.K. Lim, In Vitro Bioactivity of Titanium Implants Coated with Bicomponent Hybrid Biodegradable Polymers, J. Sol-Gel Sci. Technol., 2012, 64, p 756–764.

    CAS  Google Scholar 

  68. S. Jalota, S.B. Bhaduri, and A.C. Tas, Effect of Carbonate Content and Buffer Type on Calcium Phosphate Formation in SBF Solutions, J. Mater. Sci. Mater. Med., 2006, 17, p 697–707.

    CAS  Google Scholar 

  69. S.N. Gorodzha et al., Investigation of the Morphology and Structure of Porous Hybrid 3D Scaffolds Based on Polycaprolactone Involving Silicate-Containing Hydroxyapatite, J. Surf. Investig. X-ray Synchrotron Neutron Tech., 2018, 12, p 717–726.

    CAS  Google Scholar 

  70. X. Xiao, R. Liu, Q. Huang, and X. Ding, Preparation and Characterization of Hydroxyapatite/Polycaprolactone–Chitosan Composites, J. Mater. Sci. Mater. Med., 2009, 20, p 2375–2383.

    CAS  Google Scholar 

  71. Y. Wang, L. Liu, and S. Guo, Characterization of Biodegradable and Cytocompatible Nano-Hydroxyapatite/Polycaprolactone Porous Scaffolds in Degradation In Vitro, Polym. Degrad. Stab., 2010, 95, p 207–213.

    CAS  Google Scholar 

  72. A. Zomorodian et al., “In-Vitro” Corrosion Behaviour of the Magnesium Alloy with Al and Zn (AZ31) Protected with a Biodegradable Polycaprolactone Coating Loaded with Hydroxyapatite and Cephalexin, Electrochim. Acta, 2015, 179, p 431–440.

    CAS  Google Scholar 

  73. W. Simka et al., Modification of Titanium Oxide Layer by Calcium and Phosphorus, Electrochim. Acta, 2009, 54, p 6983–6988.

    CAS  Google Scholar 

  74. M.B. Radovanović, ŽZ. Tasić, A.T. Simonović, M.B. Petrović Mihajlović, and M.M. Antonijević, Corrosion Behavior of Titanium in Simulated Body Solutions with the Addition of Biomolecules, ACS Omega, 2020, 5, p 12768–12776.

    Google Scholar 

  75. S.V. Dorozhkin, Calcium Orthophosphates, Biomatter, 2011, 1, p 121–164.

    Google Scholar 

  76. S.V. Dorozhkin and M. Epple, Biological and Medical Significance of Calcium Phosphates, Angew. Chemie Int. Ed., 2002, 41, p 3130–3146.

    CAS  Google Scholar 

  77. I.E. Glazov, V.K. Krut’ko, O.N. Musskaya, and A.I. Kulak, Calcium Phosphate Apatites: Wet Formation, Thermal Transformations, Terminology, and Identification, Russ. J. Inorg. Chem., 2022, 67, p 173–182.

    CAS  Google Scholar 

  78. Y. Shiwaku, and O. Suzuki, Octacalcium phosphate effects on the systemic and local factors that regulate bone-cell activity. Octacalcium Phosphate Biomater. Underst. Bioact. Prop. Appl. 17–36 (2020) https://doi.org/10.1016/B978-0-08-102511-6.00002-9

  79. O. Suzuki, Evolution of octacalcium phosphate biomaterials. Octacalcium Phosphate Biomater. Underst. Bioact. Prop. Appl. 1–15 (2020) doi: https://doi.org/10.1016/B978-0-08-102511-6.00001-7

  80. N. Miyatake et al., Effect of Partial Hydrolysis of Octacalcium Phosphate on its Osteoconductive Characteristics, Biomaterials, 2009, 30, p 1005–1014.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian research funding agencies FAPEMIG, CNPq and CAPES for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, material preparation, data collection and analysis, approving the final version of the manuscript.

Corresponding author

Correspondence to Carolina Cruz Ferreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, C.C., de Sousa, L.L., Barboza, C.S. et al. Modifications in the Surface of Titanium Substrate and the Incorporation of an Essential Oil for Biomaterial Application. J. of Materi Eng and Perform 32, 6759–6769 (2023). https://doi.org/10.1007/s11665-022-07603-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07603-9

Keywords

Navigation