Skip to main content
Log in

Finite Element Simulation and Experimental Investigation of Hot Forming Cold Die Quenching and Equal Channel Angular Pressing of AA2024 Aluminum Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present study investigates the variations in the microstructure and mechanical properties of AA2024 aluminum alloy as a consequence of thermal and strain gradient in combined hot forming cold die quenching (HFQ) and equal channel angular pressing (ECAP) method. Solution-treated AA2024 aluminum alloy was HFQ–ECAPed for five passes of deformation and 3D simulations plus microstructural evolutions, and mechanical properties over the thickness of the sample were investigated. Furthermore, after each ECAP pass, intermediate solution treatment was applied, and a group of specimens was subjected to aging treatment following the deformation. 3D simulations illustrated strain uniformity by increasing the number of deformation passes with its maximum uniformity after four passes. Microstructural observations demonstrated evident grain refinement in successive passes, which were higher in the central and top parts of the sample than in the lower area. Also, a high quantity of shear bands occurred in the workpiece after the first ECAP pass. However, shear banding was deducted in the consecutive passes of deformation and intermediate solutionizing. Preferable properties in central regions were seen comparing tensile properties in surface area and central parts. Besides, the microhardness test resulted in more uniform outcomes by enhancement in the number of ECAP passes. Hardness variations showed an increase in average hardness after the first pass of deformation (compared to the annealed condition (Baghbani Barenji et al. in J Mater Res Technol 9:1683–1697, 2020) and then a negligible decrease in the following two passes. The hardness quantities again increased in the fourth pass and then dramatically decreased after the fifth pass due to the partial decomposition of the solid solution. Besides, due to strain distribution, hardness values illustrate the maximum and minimum amount in the uppermost and lowermost areas, respectively. The overall conclusions of this article presented mechanical similarities in the surface and inner parts of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. L. Rooy, Aluminum and Aluminum Alloys, in ASM Handbook, vol. 15, (1988), pp. 743e770

  2. J.C. Williams and E.A. Starke, Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51(19), p 5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023

    Article  CAS  Google Scholar 

  3. T. Dursun and C. Soutis, Recent Developments in Advanced Aircraft Aluminium Alloys, Mater. Des., 2014, 56, p 862–871. https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  4. M. Alvand, M. Naseri, E. Borhani, and H. Abdollah-Pour, Microstructure and Crystallographic Texture Characterization of Friction Stir Welded Thin AA2024 Aluminum Alloy, Iran. J. Mater. Sci. Eng., 2018, 15, p 53–63.

    Google Scholar 

  5. Z. Horita, T. Fujinami, M. Nemoto et al., Equal-Channel Angular Pressing of Commercial Aluminum Alloys: Grain Refinement, Thermal Stability and Tensile Properties, Metall. Mater. Trans. A, 2000, 31, p 691–701. https://doi.org/10.1007/s11661-000-0011-8

    Article  Google Scholar 

  6. W.J. Kim, C.S. Chung, D.S. Ma, S.I. Hong, and H.K. Kim, Optimization of Strength and Ductility of 2024 Al by Equal Channel Angular Pressing (ECAP) and Post-ECAP Aging, Scr. Mater., 2003, 49, p 333–338. https://doi.org/10.1016/S1359-6462(03)00260-4

    Article  CAS  Google Scholar 

  7. M.H. Goodarzy, H. Arabi, M.A. Boutorabi, S.H. Seyedein, and S.H. Najafabadi, The Effects of Room Temperature ECAP and Subsequent Aging on Mechanical Properties of 2024 Al Alloy, J. Alloys Compd., 2014, 585, p 753–759. https://doi.org/10.1016/j.jallcom.2013.09.202

    Article  CAS  Google Scholar 

  8. G. Kotan, E. Tan, Y.E. Kalay, and C.H. Gür, Homogenization of ECAPed Al 2024 Alloy through Age-Hardening, Mater. Sci. Eng. A, 2013, 559, p 601–606. https://doi.org/10.1016/j.msea.2012.08.148

    Article  CAS  Google Scholar 

  9. J. Mao, S.B. Kang, and J.O. Park, Grain Refinement, Thermal Stability and Tensile Properties of 2024 Aluminum Alloy after Equal-Channel Angular Pressing, J. Mater. Process. Technol., 2005, 159, p 314–320. https://doi.org/10.1016/j.jmatprotec.2004.05.020

    Article  CAS  Google Scholar 

  10. J.-Y. Jeon, R. Matsumoto, and H. Utsunomiya, Die Quenching Limit of AA2024 Aluminum Alloy Billet on Servo Press, J. Mater. Process. Technol., 2014, 214, p 2514–2521. https://doi.org/10.1016/j.jmatprotec.2014.05.015

    Article  CAS  Google Scholar 

  11. S. Cheng, Y.H. Zhao, Y.T. Zhu, and E. Ma, Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-Precipitation, Acta Mater., 2007, 55, p 5822–5832. https://doi.org/10.1016/j.actamat.2007.06.043

    Article  CAS  Google Scholar 

  12. Wu. Dong, W. Li, K. Liu, Y. Yang, and S. Hao, Optimization of Cold Spray Additive Manufactured AA2024/Al2O3 Metal Matrix Composite with Heat Treatment, J. Mater. Sci. Technol., 2022, 106, p 211–224. https://doi.org/10.1016/j.jmst.2021.07.036

    Article  CAS  Google Scholar 

  13. N.A. Krasilnikov and A. Sharafutdiniv, High Strength and Ductility of Nanostructured Al-Based Alloy, Prepared by High-Pressure Technique, Mater. Sci. Eng. A, 2007, 463, p 74–77. https://doi.org/10.1016/j.msea.2006.08.117

    Article  CAS  Google Scholar 

  14. G. Tan, Y.E. Kalay, and C.H. Gür, Long-Term Thermal Stability of Equal Channel Angular Pressed 2024 Aluminum Alloy, Mater. Sci. Eng. A, 2016, 677, p 307–315. https://doi.org/10.1016/j.msea.2016.09.048

    Article  CAS  Google Scholar 

  15. J. Zhou, S. Xu, S. Huang, X. Meng, J. Sheng, H. Zhang, J. Li, Y. Sun, and E.A. Boateng, Tensile Properties and Microstructures of a 2024-t351 Aluminum Alloy Subjected to Cryogenic Treatment, Metals, 2016, 6, p 279. https://doi.org/10.3390/met6110279

    Article  Google Scholar 

  16. S.H. Mousavi Anijdan, D. Sadeghi-Nezhad, H. Lee, W. Shin, N. Park, M.J. Nayyeri, H.R. Jafarian, and A.R. Eivani, TEM Study of S’ Hardening Precipitates in the Cold Rolled and Aged AA2024 Aluminum Alloy: Influence on the Microstructural Evolution, Tensile Properties & Electrical Conductivity, J. Mater. Res. Technol., 2021, 13, p 798–807. https://doi.org/10.1016/j.jmrt.2021.05.003

    Article  CAS  Google Scholar 

  17. S. Krymskiy, O. Sitdikov, E. Avtokratova, and M. Markushev, 2024 Aluminum Alloy Ultrahigh-Strength Sheet due to Two-Level Nanostructuring under Cryorolling and Heat Treatment, Trans. Nonferrous Metals Soc. China, 2020, 30(1), p 14–26. https://doi.org/10.1016/S1003-6326(19)65176-9

    Article  CAS  Google Scholar 

  18. J.L. García-Hernández, C.G. Garay-Reyes, I.K. Gómez-Barraza, M.A. Ruiz-Esparza-Rodríguez, E.J. Gutiérrez-Castañeda, I. Estrada-Guel, M.C. Maldonado-Orozco, and R. Martínez-Sánchez, Influence of Plastic Deformation and Cu/Mg Ratio on the Strengthening Mechanisms and Precipitation Behavior of AA2024 Aluminum Alloys, J. Mater. Res. Technol., 2019, 8(6), p 5471–5475. https://doi.org/10.1016/j.jmrt.2019.09.015

    Article  CAS  Google Scholar 

  19. X.-K. Meng, H. Wang, W.-S. Tan, J. Cai, J.-Z. Zhou, and L. Liu, Gradient Microstructure and Vibration Fatigue Properties of 2024-T351 Aluminium Alloy treated by Laser Shock Peening, Surf. Coat. Technol., 2020, 391, p 125698. https://doi.org/10.1016/j.surfcoat.2020.125698

    Article  CAS  Google Scholar 

  20. Y. Zhao, X. Wang, T. Cao, J.-K. Han, M. Kawasaki, J.-I. Jang, H.N. Han, U. Ramamurty, L. Wang, and Y. Xue, Effect of Grain Size on the Strain Rate Sensitivity of CoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2020, 782, p 139281. https://doi.org/10.1016/j.msea.2020.139281

    Article  CAS  Google Scholar 

  21. R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981.

    Article  CAS  Google Scholar 

  22. R. Bakhshi, M.H. Farshidi, and S.A. Sajjadi, Strengthening of Aluminium Alloy 7005 through Imposition of Severe Plastic Deformation Supplemented by Different Ageing Treatments, Trans. Nonferrous Metals Soc. China, 2021, 31(10), p 2909–2921. https://doi.org/10.1016/S1003-6326(21)65702-3

    Article  CAS  Google Scholar 

  23. R.B. Figueiredo and T.G. Langdon, Fabricating Ultrafine-Grained Materials through the Application of Severe Plastic Deformation: A Review of Developments in Brazil, J. Mater. Res. Technol., 2012, 1(1), p 55–62. https://doi.org/10.1016/S2238-7854(12)70010-8

    Article  CAS  Google Scholar 

  24. R.N. Harsha, V.M. Kulkarni, and B.S. Babu, Severe Plastic Deformation: A Review, Mater. Today Proc., 2018, 5(10), p 22340–22349. https://doi.org/10.1016/j.matpr.2018.06.600

    Article  Google Scholar 

  25. H.N. Radhi, A.M.H. Aljassani, and M.T. Mohammed, Effect of ECAP on Microstructure, Mechanical and Tribological Properties of Aluminum and Brass Alloys: A Review, Mater. Today Proc., 2020, 26(2), p 2302–2307. https://doi.org/10.1016/j.matpr.2020.02.497

    Article  CAS  Google Scholar 

  26. C.G. de Faria, R.B. Figueiredo, M.T.P. Aguilar, and P.R. Cetlin, Strain Path Effects on the Development of Shear Bands during Shear Tests in Aluminum Alloy Processed by ECAP, J. Mater. Res. Technol., 2015, 4(3), p 297–303. https://doi.org/10.1016/j.jmrt.2015.01.009

    Article  CAS  Google Scholar 

  27. W.J. Kim and J.Y. Wang, Microstructure of the Post-ECAP Aging Processed 6061 Al Alloys, Mater. Sci. Eng. A, 2007, 464, p 23–27. https://doi.org/10.1016/j.msea.2007.03.074

    Article  CAS  Google Scholar 

  28. C.M. Cepeda-Jiménez, J.M. García-Infanta, O.A. Ruano, and F. Carreño, Mechanical Properties at Room Temperature of an Al-Zn-Mg-Cu Alloy Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2011, 509, p 8649–8656. https://doi.org/10.1016/j.jallcom.2011.06.070

    Article  CAS  Google Scholar 

  29. E.A. El-Danaf, Mechanical Properties, Microstructure and Texture of Single Pass Equal Channel Angular Pressed 1050, 5083, 6082 and 7010 Aluminum Alloys with Different Dies, Mater. Des., 2011, 32, p 3838–3853. https://doi.org/10.1016/j.matdes.2011.03.006

    Article  CAS  Google Scholar 

  30. G. Ingarao, Manufacturing Strategies for Efficiency in Energy and Resources Use: The Role of Metal Shaping Processes, J. Clean. Prod, 2017, 142, p 2872–2886. https://doi.org/10.1016/j.jclepro.2016.10.182

    Article  Google Scholar 

  31. E.G. Hertwich, S. Ali, L. Ciacci, T. Fishman, N. Heeren, E. Masanet et al., Material Efficiency Strategies to Reducing Greenhouse Gas Emissions Associated with Buildings, Vehicles, and Electronics: A Review, Environ. Res. Lett., 2019, 14, p 043004. https://doi.org/10.1088/1748-9326/ab0fe3

    Article  CAS  Google Scholar 

  32. W. Yuna, C. Liu, H. Liao, J. Jiang, and A. Ma, Joint Effect of Micro-Sized Si Particles and Nano-Sized Dispersoids on the Flow Behavior and Dynamic Recrystallization of Near-Eutectic Al-Si Based Alloys during Hot Compression, J. Alloys Compd., 2021, 856, p 158072. https://doi.org/10.1016/j.jallcom.2020.158072

    Article  CAS  Google Scholar 

  33. X. Zhuo, X. Haichao, W. Yuna, H. Zhichao, J. Jiang and A. Ma, Effect of Eutectic Si Size on the Flow Behavior and Hot Processing Map of Near Eutectic Al-Si Alloys, J. Mater. Res. Technol., 2021, 15, p 5694–5705. https://doi.org/10.1016/j.jmrt.2021.11.015

    Article  CAS  Google Scholar 

  34. X. Zhuo, Q. Zhang, H. Liu, H. Zhichao, P. Zhang, J. Jiang, A. Ma, and W. Yuna, Enhanced Tensile Strength and Ductility of an Al-6Si-3Cu Alloy Processed by Room Temperature Rolling, J. Alloys Compd., 2022, 899, p 163321. https://doi.org/10.1016/j.jallcom.2021.163321

    Article  CAS  Google Scholar 

  35. V.M. Segal, New Hot Thermo-Mechanical Processing of Heat Treatable Aluminum Alloys, J. Mater. Process. Technol., 2015 https://doi.org/10.1016/j.jmatprotec.2015.12.009

    Article  Google Scholar 

  36. J. Jin, X. Wang, L. Deng, and J. Luo, A Single-Step Hot Stamping-Forging Process for Aluminum Alloy Shell Parts with Non-Uniform Thickness, J. Mater. Process. Technol., 2015 https://doi.org/10.1016/j.jmatprotec.2015.07.009

    Article  Google Scholar 

  37. J. Lin, T.A. Dean, and R.P. Garrett, A Process in Forming High Strength and Complex-Shaped Al-Alloy Sheet Components. UK Patent WO2008059242 (2008)

  38. P. Hidalgo-Manrique, S. Cao, H.R. Shercliff, R.D. Hunt, and J.D. Robson, Microstructure and Properties of Aluminium Alloy 6082 Formed by the Hot Form Quench Process, Mater. Sci. Eng. A, 2021, 804, p 140751. https://doi.org/10.1016/j.msea.2021.140751

    Article  CAS  Google Scholar 

  39. S. Yuan, X. Fan, and Z. He, Hot Forming-Quenching Integrated Process with Cold-Hot Dies for 2A12 Aluminum Alloy Sheet, Proc. Eng., 2014, 81, p 1780–1785. https://doi.org/10.1016/j.proeng.2014.10.232

    Article  CAS  Google Scholar 

  40. A. Foster, D. Szegda, and J. Sellors, Design Considerations for HFQ® Hot Stamped Aluminium Structural Panels. In: MATEC web conference, vol. 21, (2015) pp. 05014 https://doi.org/10.1051/matecconf/20152105014

  41. X. Fan, Z. He, S. Yuan, and K. Zheng, Experimental Investigation on Hot Forming-Quenching Integrated Process of 6A02 Aluminum Alloy Sheet, Mater. Sci. Eng. A, 2013, 573, p 154–160. https://doi.org/10.1016/j.msea.2013.02.058

    Article  CAS  Google Scholar 

  42. N. N, M.S. Mohamed, J. Cai, J. Lin, D. Balint, and T.A. Dean, Experimental and Numerical Studies on the Formability of Materials in Hot Stamping and Cold Die Quenching Processes. In: AIP conference proceedings, AIP (2011), pp. 1555–1561

  43. M.S. Mohamed, A.D. Foster, J. Lin, D.S. Balint, and T.A. Dean, Investigation of Deformation and Failure Features in Hot Stamping of AA6082: Experimentation and Modelling, Int. J. Mach. Tools Manuf., 2012, 53, p 27–38. https://doi.org/10.1016/j.ijmachtools.2011.07.005

    Article  Google Scholar 

  44. R.P. Garrett, J. Lin, and T.A. Dean, Solution Heat Treatment and Cold Die Quenching in Forming AA 6xxx Sheet Components: Feasibility Study, Adv. Mater. Res., 2005, 8, p 673–680. https://doi.org/10.4028/www.scientific.net/AMR.6-8.673

    Article  Google Scholar 

  45. K. Zhao, Y. Chang, P. Hu, and Y. Wu, Influence of Rapid Cooling Pretreatment on Microstructure and Mechanical Property of Hot Stamped AHSS Part, J. Mater. Process. Technol., 2016, 228, p 68–75. https://doi.org/10.1016/j.jmatprotec.2014.09.022

    Article  Google Scholar 

  46. X. Fan, Z. He, W. Zhou, and S. Yuan, Formability and Strengthening Mechanism of Solution Treated Al-Mg-Si Alloy Sheet under Hot Stamping Conditions, J. Mater. Process. Technol., 2016, 228, p 179–185. https://doi.org/10.1016/j.jmatprotec.2015.10.016

    Article  CAS  Google Scholar 

  47. Y.F. Jiang, H. Ding, M.H. Cai, Y. Chen, Y. Liu, and Y.S. Zhang, Investigation into the Hot Forming-Quenching Integrated Process with Cold Dies for High Strength Aluminum Alloy, Mater. Charact., 2019, 158, p 109967. https://doi.org/10.1016/j.matchar.2019.109967

    Article  CAS  Google Scholar 

  48. X. Fan, X. Wang, Y. Lin, Z. He, and S. Yuan, Deformation and Strengthening Behaviors of Al-Cu-Mg Alloy Thick Plate during Hot Forming-Quenching Integrated Process, J. Mater. Res. Technol., 2022, 16, p 1231–1242. https://doi.org/10.1016/j.jmrt.2021.12.069

    Article  CAS  Google Scholar 

  49. A. Baghbani Barenji, A.R. Eivani, M. Hasheminiasari, N. Park, and H.R. Jafarian, Application of Hot Forming Cold Die Quenching for Facilitating Equal Channel Angular Pressing of AA2024 Aluminum Alloy, J. Alloys Compd., 2019, 791, p 265–277. https://doi.org/10.1016/j.jallcom.2019.03.059

    Article  CAS  Google Scholar 

  50. A. Baghbani Barenji, A.R. Eivani, M. Hasheminiasari, and H.R. Jafarian, Effects of Hot Forming Cold Die Quenching and Inter-Pass Solution Treatment on the Evolution of Microstructure and Mechanical Properties of AA2024 Aluminum Alloy after Equal Channel Angular Pressing, J. Mater. Res. Technol., 2020, 9, p 1683–1697. https://doi.org/10.1016/j.jmrt.2019.11.092

    Article  CAS  Google Scholar 

  51. A. Baghbani Barenji, A.R. Eivani, H.R. Jafarian, and N. Park, Effects of Hot Forming Cold Die Quenching and Solution Treatment on Formability and Pressing Load During Equal Channel Angular Deformation of AA2024 Aluminum Alloy, J. Mater. Res. Technol., 2020, 9(3), p 5599–5609. https://doi.org/10.1016/j.jmrt.2020.03.085

    Article  CAS  Google Scholar 

  52. L. Wang, M. Strangwood, D. Balint, J. Lin, and T.A. Dean, Formability and Failure Mechanisms of AA2024 under Hot Forming Conditions, Mater. Sci. Eng. A., 2011, 528, p 2648–2656. https://doi.org/10.1016/j.msea.2010.11.084

    Article  CAS  Google Scholar 

  53. N.Q. Chinh, J. Gubicza, T. Czeppe, J. Lendvai, C. Xu, R.Z. Valiev et al., Developing a Strategy for the Processing of Age-Hardenable Alloys by ECAP at Room Temperature, Mater. Sci. Eng. A, 2009, 516, p 248–252. https://doi.org/10.1016/j.msea.2009.03.049

    Article  CAS  Google Scholar 

  54. M.R. Roshan, S.A.J. Jahromi, and R. Ebrahimi, Predicting the Critical Pre-Aging Time in ECAP Processing of Age-Hardenable Aluminum Alloys, J. Alloys Compd., 2011, 509, p 7833–7839. https://doi.org/10.1016/j.jallcom.2011.05.025

    Article  CAS  Google Scholar 

  55. A.R. Eivani and A.K. Taheri, A New Method for Estimating Strain in Equal Channel Angular Extrusion, J. Mater. Process. Technol., 2007, 183, p 148–153. https://doi.org/10.1016/j.jmatprotec.2006.09.020

    Article  CAS  Google Scholar 

  56. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon, The Process of Grain Refinement in Equal-Channel Angular Pressing, Acta Mater., 1998, 46, p 3317–3331. https://doi.org/10.1016/S1359-6454(97)00494-1

    Article  CAS  Google Scholar 

  57. N. El Mahallawy, F.A. Shehata, M.A. El Hameed, M.I.A. El Aal, and H.S. Kim, 3D FEM Simulations for the Homogeneity of Plastic Deformation in Al-Cu Alloys during ECAP, Mater. Sci. Eng. A, 2010, 527(6), p 1404–1410. https://doi.org/10.1016/j.msea.2009.10.032

    Article  CAS  Google Scholar 

  58. A. Ghosh and Ma. Ghosh, 3D FEM Simulation of Al-Zn-Mg-Cu Alloy during Multi-Pass ECAP with Varying Processing Routes, Mater. Today Commun., 2021, 26, p 102112. https://doi.org/10.1016/j.mtcomm.2021.102112

    Article  CAS  Google Scholar 

  59. A.A.L. El Mohamed Ibrahim Abd, 3D FEM Simulations and Experimental Validation of Plastic Deformation of Pure Aluminum Deformed by ECAP and Combination of ECAP and Direct Extrusion, Trans. Nonferrous Metals Soc. China, 2017, 27(6), p 1338–1352. https://doi.org/10.1016/S1003-6326(17)60155-9

    Article  Google Scholar 

  60. S. Dumoulin, H.J. Roven, J.C. Werenskiold, and H.S. Valberg, Finite Element Modeling of Equal Channel Angular Pressing: Effect of Material Properties, Friction and Die Geometry, Mater. Sci. Eng. A, 2005, 410–411, p 248–251. https://doi.org/10.1016/j.msea.2005.08.103

    Article  CAS  Google Scholar 

  61. M. Ebrahimi, S. Attarilar, C. Gode et al., Damage Prediction of 7025 Aluminum Alloy during Equal-Channel Angular Pressing, Int. J. Miner. Metall. Mater., 2014, 21, p 990–998. https://doi.org/10.1007/s12613-014-1000-z

    Article  CAS  Google Scholar 

  62. V.L. Sordi, A.A. Mendes Filho, G.T. Valio, P. Springer, J.B. Rubert, and M. Ferrante, Equal-Channel Angular Pressing: Influence of Die Design on Pressure Forces, Strain Homogeneity, and Corner Gap Formation, J. Mater. Sci., 2016, 51, p 2380–2393. https://doi.org/10.1007/s10853-015-9547-2

    Article  CAS  Google Scholar 

  63. M. Prell, C. Xu, and T.G. Langdon, The Evolution of Homogeneity on Longitudinal Sections during Processing by ECAP, Mater. Sci. Eng. A., 2008, 480, p 449–455. https://doi.org/10.1016/j.msea.2007.08.011

    Article  CAS  Google Scholar 

  64. S.C. Yoon and H.S. Kim, Finite Element Analysis of the Effect of the Inner Corner Angle in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2008, 490, p 438–444. https://doi.org/10.1016/j.msea.2008.01.066

    Article  CAS  Google Scholar 

  65. A.V. Nagasekhar and H.S. Kim, Plastic Deformation Characteristics of Cross-Equal Channel Angular Pressing, Comput. Mater. Sci., 2008, 43, p 1069–1073. https://doi.org/10.1016/j.commatsci.2008.02.030

    Article  CAS  Google Scholar 

  66. X.H. An, Q.Y. Lin, S.D. Wu, and Z.F. Zhang, Microstructural Evolution and Shear Fracture of Cu-16 at.% Al Alloy Induced by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2010, 527, p 4510–4514. https://doi.org/10.1016/j.msea.2010.03.101

    Article  CAS  Google Scholar 

  67. A.A.S. Mohammed, E.A. El-danaf, and A.A. Radwan, A Criterion for Shear Banding Localization in Polycrystalline FCC Metals and Alloys and Critical Working Conditions for Different Microstructural Variables, J. Mater. Process. Technol., 2007, 186, p 14–21. https://doi.org/10.1016/j.jmatprotec.2006.11.028

    Article  CAS  Google Scholar 

  68. J. Papasidero, V. Doquet, and S. Lepeer, Multiscale Investigation of Ductile Fracture Mechanisms and Strain Localization under Shear Loading in 2024–T351 Aluminum Alloy and 36NiCrMo16 Steel, Mater. Sci. Eng. A, 2014, 610, p 203–219. https://doi.org/10.1016/j.msea.2014.05.032

    Article  CAS  Google Scholar 

  69. M. Ebrahimi, M.H. Shaeri, R. Naseri, and C. Gode, Equal Channel Angular Extrusion for Tube Configuration of Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2018, 731, p 569–576. https://doi.org/10.1016/j.msea.2018.06.080

    Article  CAS  Google Scholar 

  70. H. Miyamoto, Corrosion of Ultrafine Grained Materials by Severe Plastic Deformation, an OVERVIEW, Mater. Trans., 2016, 57, p 559–572. https://doi.org/10.2320/matertrans.M2015452

    Article  CAS  Google Scholar 

  71. M. Ebrahimi, Sh. Attarilar, M.H. Shaeri, C. Gode, H. Armoon, and F. Djavanroodi, An Investigation into the Effect of Alloying Elements on Corrosion Behavior of Severely Deformed Cu-Sn Alloys by Equal Channel Angular Pressing, Arch. Civ. Mech. Eng., 2019, 19(3), p 842–850. https://doi.org/10.1016/j.acme.2019.03.009

    Article  Google Scholar 

  72. F. Djavanroodi, B. Omranpour, M. Ebrahimi, and M. Sedighi, Designing of ECAP Parameters Based on Strain Distribution Uniformity, Prog. Nat. Sci. Mater. Int., 2012, 22, p 452–460. https://doi.org/10.1016/j.pnsc.2012.08.001

    Article  Google Scholar 

  73. F. Djavanroodi, M. Daneshtalab, and M. Ebrahimi, A Novel Technique to Increase Strain Distribution Homogeneity for ECAPed Materials, Mater. Sci. Eng. A, 2012, 535, p 115–121. https://doi.org/10.1016/j.msea.2011.12.050

    Article  CAS  Google Scholar 

  74. H.K.Z. Xing and S. Kang, Softening Behavior of 8011 Alloy Produced by Accumulative Roll Bonding Process, Scr. Mater., 2001, 45, p 597–604.

    Article  CAS  Google Scholar 

  75. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Influence of ECAP on Precipitate Distributions in a Spray-Cast Aluminum Alloy, Acta Mater., 2005, 53, p 749–758. https://doi.org/10.1016/j.actamat.2004.10.026

    Article  CAS  Google Scholar 

  76. B.B. Straumal, B. Baretzky, A.A. Mazilkin, F. Phillipp, O.A. Kogtenkova, M.N. Volkov et al., Formation of Nano Grained Structure and Decomposition of Supersaturated Solid Solution during High Pressure Torsion of Al-Zn and Al-Mg Alloys, Acta Mater., 2004, 52, p 4469–4478. https://doi.org/10.1016/j.actamat.2004.06.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Eivani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghbani Barenji, A., Eivani, A.R., Vafaeenezhad, H. et al. Finite Element Simulation and Experimental Investigation of Hot Forming Cold Die Quenching and Equal Channel Angular Pressing of AA2024 Aluminum Alloy. J. of Materi Eng and Perform 32, 6942–6956 (2023). https://doi.org/10.1007/s11665-022-07584-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07584-9

Keywords

Navigation