Skip to main content
Log in

Wear Behavior of Hot Rolled 400 HB Grade Martensite-Ferrite Duplex Steel under Abrasion-Adhesion Condition

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot rolled 400 HB grade martensite-ferrite duplex steel is a new type of wear-resistant material which is used in the manufacture of heavy-haul carriage. In this study, three experimental steels (HR-3, HR-9 and HRT-9) were produced via different thermo-mechanical control process (TMCP) and the microstructure, mechanical properties and the wear behavior under abrasion-adhesion condition were studied. During the step cooling process of TMCP, the volume fraction of ferrite and retained austenite increase with the increase of air-cooling time. In this study, the experimental steel with the highest hardness exhibits the worst wear resistance. The wear mechanism of HR-3 is delamination, and the wear mechanisms of HR-9 and HRT-9 are plowing grooves and adhesion. Oxidation induced by friction heat promotes the brittle spalling, while the delamination caused by brittle spalling leads to the largest volume loss. HRT-9 has the lowest hardness thus its oxide layer is the easiest to remove. At the same time, the finer martensitic structure, more ferrite content, and better ductility of HRT-9 inhibit crack growth. Therefore, HRT-9 exhibits the best wear resistance. The results of this study can provide guidance for the development and application of ferrite-martensite duplex wear-resistant steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Jha, B.K. Prasad, O.P. Modi, S. Das and A.H. Yegneswaran, Correlating Microstructural Features and Mechanical Properties with Abrasion Resistance of a High Strength Low Alloy Steel, Wear, 2003, 254(1–2), p 120–128. https://doi.org/10.1016/S0043-1648(02)00309-5

    Article  CAS  Google Scholar 

  2. O.P. Modi, P. Pandit, D.P. Mondal, B.K. Prasad, A.H. Yegneswaran and A. Chrysanthou, High-Stress Abrasive Wear Response of 02% Carbon Dual Phase Steel: Effects of Microstructural Features and Experimental Conditions, Mater. Sci. Eng. A, 2007, 458(1–2), p 303–311. https://doi.org/10.1016/j.msea.2006.12.083

    Article  CAS  Google Scholar 

  3. H. Saghafian and S. Kheirandish, Correlating Microstructural Features with Wear Resistance of Dual Phase Steel, Mater. Lett., 2007, 61(14–15), p 3059–3063. https://doi.org/10.1016/j.matlet.2006.11.001

    Article  CAS  Google Scholar 

  4. K. Ádám, S. László, K.R. Zsolt, G. András, M. Tamás and D.B. Patrick, Abrasive Sensitivity of Martensitic and A Multi-Phase Steels Under Different Abrasive Conditions, Materials, 2021, 14(6), p 1343. https://doi.org/10.3390/ma14061343

    Article  CAS  Google Scholar 

  5. X. Xu, W. Xu, F. Ederveen and S. van der Zwaag, Design of Low Hardness Abrasion Resistant Steels, Wear, 2013, 301(1–2), p 89–93. https://doi.org/10.1016/j.wear.2013.01.002

    Article  CAS  Google Scholar 

  6. C. Cai, R. Song, S. Peng, Y. Wang and J. Li, Microstructure, Mechanical Properties and Tribological Behavior of a Novel Low-Alloy High Strength Mg-2 Zn-0.5 Zr-0.5 Nd Alloy, Vacuum, 2020, 179, p 109518. https://doi.org/10.1016/j.vacuum.2020.109518

    Article  CAS  Google Scholar 

  7. T. Allam and W. Bleck, Development of a New Concept for Hot-Rolled Weathering-DP Steel: Thermo-mechanical Simulation, Microstructure Adjustment, and Mechanical Properties, Steel Res. Int., 2016, 87(1), p 68–78. https://doi.org/10.1002/srin.201500108

    Article  CAS  Google Scholar 

  8. J. Jia, Z. Liu, X. Li, C. Du and W. Li, Comparative Study on the Stress Corrosion Cracking of a New Ni-Advanced High Strength Steel Prepared by TMCP, Direct Quenching, and Quenching & Tempering, Mater. Sci. Eng. A, 2021, 825, p 141854. https://doi.org/10.1016/j.msea.2021.141854

    Article  CAS  Google Scholar 

  9. B. Jiang, X. Hu, L. Zhou, H. Wang, Y. Liu and F. Gou, Effect of Transformation Temperature on the Ferrite-Bainite Microstructures, Mechanical Properties and the Deformation Behavior in a Hot-Rolled Dual Phase Steel, Met. Mater. Int., 2021, 27(2), p 319–327. https://doi.org/10.1007/s12540-019-00371-7

    Article  CAS  Google Scholar 

  10. Z. Pei, R. Song, Q. Ba and Y. Feng, Dimensionality Wear Analysis: Three-Body Impact Abrasive Wear Behavior of a Martensitic Steel in Comparison with Mn13Cr2, Wear, 2018, 414, p 341–351. https://doi.org/10.1016/j.wear.2018.09.002

    Article  CAS  Google Scholar 

  11. E. Wen, R. Song and C. Cai, Study of the Three-Body Impact Abrasive Wear Behaviour of a Low Alloy Steel Reinforced with Niobium, J. Manuf. Process., 2019, 46, p 185–193. https://doi.org/10.1016/j.jmapro.2019.08.026

    Article  Google Scholar 

  12. Y. Wang, R. Song and L. Huang, The effect of Retained Austenite on the Wear Mechanism of Bainitic Ductile Iron under Impact Load, J. Mater. Res. Technol., 2021, 11, p 1665–1671. https://doi.org/10.1016/j.jmrt.2021.01.122

    Article  CAS  Google Scholar 

  13. T.S. Eyre, Wear characteristics of metals, Tribol. Int., 1976, 9(5), p 203–212. https://doi.org/10.1016/0301-679X(76)90077-3

    Article  CAS  Google Scholar 

  14. Y. Zhang and A. Jourani, Combined Effect of Microstructure and Gaseous Environments on Oxidative and Adhesive Wear of Dual-Phase Steel, J. Mater. Eng. Perform., 2021, 30(12), p 9333–9351. https://doi.org/10.1007/s11665-021-06090-8

    Article  CAS  Google Scholar 

  15. N. Ashkan, H. Hossein and F.-R. Morteza, Effect of Silicon Content on the Wear Behavior of Low-Carbon Dual-Phase Steels, Tribol. Lett., 2019, 67(3), p 1–11. https://doi.org/10.1007/s11249-019-1181-8

    Article  CAS  Google Scholar 

  16. F.C.R. Hernández, N.G. Demas, K. Gonzales and A.A. Polycarpou, Correlation Between Laboratory Ball-On-Disk and Full-Scale Rail Performance Tests, Wear, 2011, 270(7–8), p 479–491. https://doi.org/10.1016/j.wear.2011.01.001

    Article  CAS  Google Scholar 

  17. P. Xu, B. Bai, F. Yin, H. Fang and K. Nagai, Microstructure Control and Wear Resistance of Grain Boundary Allotriomorphic Ferrite/Granular Bainite Duplex Steel, Mater. Sci. Eng. A, 2004, 385(1–2), p 65–73. https://doi.org/10.1016/j.msea.2004.04.073

    Article  CAS  Google Scholar 

  18. A.S. Podder, I. Lonardelli, A. Molinari and H.K.D.H. Bhadeshia, Thermal Stability of Retained Austenite in Bainitic Steel: An in Situ Study, Proc. R. Soc. London Ser. A, 2011, 467(2135), p 3141–3156. https://doi.org/10.1098/rspa.2011.0212

    Article  CAS  Google Scholar 

  19. V.L. de la Concepción, H.N. Lorusso and H.G. Svoboda, Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels, Procedia Mater. Sci., 2015, 8, p 1047–1056. https://doi.org/10.1016/j.mspro.2015.04.167

    Article  CAS  Google Scholar 

  20. N. Saeidi and A. Ekrami, Comparison of Mechanical Properties of Martensite/Ferrite and Bainite/Ferrite Dual Phase 4340 Steels, Mater. Sci. Eng. A, 2009, 523(1–2), p 125–129. https://doi.org/10.1016/j.msea.2009.06.057

    Article  CAS  Google Scholar 

  21. A. Arsenlis and D.M. Parks, Crystallographic Aspects of Geometrically-Necessary and Statistically-Stored Dislocation Density, Acta Mater., 1999, 47(5), p 1597–1611. https://doi.org/10.1016/S1359-6454(99)00020-8

    Article  CAS  Google Scholar 

  22. Y. Feng, R. Song, Z. Pei, R. Song and G. Dou, Effect of Aging Isothermal Time on the Microstructure and Room-Temperature Impact Toughness of Fe-2.48 Mn-7.3 Al-1.2 C Austenitic Steel with κ-Carbides Precipitation, Met. Mater. Int., 2018, 24(5), p 1012–1023. https://doi.org/10.1007/s12540-018-0112-9

    Article  CAS  Google Scholar 

  23. E. Wen, R. Song and W. Xiong, Effect of Tempering Temperature on Microstructures and Wear Behavior of a 500 HB Grade Wear-Resistant Steel, Metals, 2019, 9(1), p 45. https://doi.org/10.3390/met9010045

    Article  CAS  Google Scholar 

  24. N.P. Suh, An Overview of the Delamination Theory of Wear, Wear, 1977, 44, p 1–16. https://doi.org/10.1016/0043-1648(77)90081-3

    Article  Google Scholar 

  25. I. Velkavrh, F. Ausserer, S. Klien, J. Brenner, P. Foreˆt and A. Diem, The Effect of Gaseous Atmospheres on Friction and Wear of Steel-Steel Contacts, Tribol. Int., 2014, 79, p 99–110. https://doi.org/10.1016/j.triboint.2014.05.027

    Article  CAS  Google Scholar 

  26. B. Narayanaswamy, P. Hodgson and H. Beladi, Effect of Particle Characteristics on the Two-Body Abrasive Wear Behaviour of a Pearlitic Steel, Wear, 2016, 354, p 41–52. https://doi.org/10.1016/j.wear.2016.03.001

    Article  CAS  Google Scholar 

  27. J.F. Fleming and N.P. Suh, Mechanics of Crack Propagation in Delamination Wear, Wear, 1977, 44, p 39–56. https://doi.org/10.1016/0043-1648(77)90083-7

    Article  Google Scholar 

  28. S. Jahanmir and N.P. Suh, Mechanics of Subsurface Void Nucleation in Delamination Wear, Wear, 1977, 44, p 17–38. https://doi.org/10.1016/0043-1648(77)90082-5

    Article  Google Scholar 

  29. X.H. Cui, S.Q. Wang, F. Wang and K.M. Chen, Research on Oxidation Wear Mechanism of the Cast Steels, Wear, 2008, 265, p 468–476. https://doi.org/10.1016/j.wear.2007.11.015

    Article  CAS  Google Scholar 

  30. W. Zhong, J.J. Hu, P. Shen, C.Y. Wang and Q.Y. Lius, Experimental Investigation Between Rolling Contact Fatigue and Wear of High-Speed and Heavy-Haul Railway and Selection of Rail Material, Wear, 2011, 271(9–10), p 2485–2493. https://doi.org/10.1016/j.wear.2010.12.053

    Article  CAS  Google Scholar 

  31. G. Krauss, Deformation and Fracture in Martensitic Carbon Steels Tempered at Low Temperature, Metall. Mater. Trans. B, 2001, 32, p 205–221. https://doi.org/10.1007/s11663-001-0044-4

    Article  Google Scholar 

  32. S.M. Hasan, D. Chakrabarti and S.B. Singh, Dry Rolling/Sliding Wear Behaviour of Pearlitic Rail and Newly Developed Carbide-Free Bainitic Rail Steels, Wear, 2018, 408, p 151–159. https://doi.org/10.1016/j.wear.2018.05.006

    Article  CAS  Google Scholar 

  33. C. Trevisiol, A. Jourani and S. Bouvier, Effect of Martensite Volume Fraction and Abrasive Particles Size on Friction and Wear Behaviour of a Low Alloy Steel, Tribol. Int., 2017, 113, p 411–425. https://doi.org/10.1016/j.triboint.2016.11.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Handan Iron and Steel Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guannan Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Li, T. & Chen, Z. Wear Behavior of Hot Rolled 400 HB Grade Martensite-Ferrite Duplex Steel under Abrasion-Adhesion Condition. J. of Materi Eng and Perform 32, 6423–6433 (2023). https://doi.org/10.1007/s11665-022-07569-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07569-8

Keywords

Navigation