Skip to main content
Log in

Effect of Gamma Radiation on the Electrochemical Behavior of AISI 8620 Steel Coated with Diamond-Like Carbon

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Equipment degradation caused by corrosion has become frequent in pressurized water-based nuclear reactors (PWR). The radiation and adverse conditions encountered in the primary circuit of these reactors degrade most non-metallic materials. The growing search for materials with high corrosion resistance, stability and durability has intensified in recent years with a view to improving these industrial systems. In this context, a steel with industrial application AISI 8620 was coated with Diamond-Like Carbon (DLC). The coating was made by the plasma-enhanced chemical vapor deposition (PECVD) technique and subsequently irradiated with gamma rays. The morphology and physicochemical characterizations of the steel surfaces coated with the DLC film were evaluated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and Raman scattering spectroscopy. The electrochemical behavior was evaluated by using electrochemical impedance spectroscopy. The analysis indicated increased corrosion potential and a higher charge transfer resistance for coated and irradiated steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Flambard, F. Carrette, C. Monchy-Leroy, E. Andrieu and L. Laffont, Influence of the Transient Conditions on Release of Corrosion Products and Oxidation of Alloy 690 Tubes during Pressurized Water Reactor Restart after Steam Generators Replacement, J. Nucl. Mater., 2021, 543, 152562. https://doi.org/10.1016/j.jnucmat.2020.152562

    Article  CAS  Google Scholar 

  2. S.S. Hwang, Review of PWSCC and Mitigation Management Strategies of Alloy 600 Materials of PWRs, J. Nucl. Mater., 2013, 443(1–3), p 321–330. https://doi.org/10.1016/j.jnucmat.2013.07.032

    Article  CAS  Google Scholar 

  3. Scott P. M. An Overview of materials degradation by stress corrosion in PWRs. In: Proceedings of the Annual European Corrosion Conference of the European Federation of Corrosion, 12–16 September (Nice), European Federation of Corrosion, 2004, p 2–8.

  4. Miteva R., Taylor N. G., General Review of Dissimilar Metal Welds in Piping Systems of Pressurized Water Reactors, Including WWER Designs, Institute for Energy and Transport, European Commission DG-JRC/IE, 2006, p 8–17 (EUR - 22469).

  5. Rao G., Moffatt G., Mclree A., Metallurgical Investigation of Cracking in the Reactor Vessel Alpha Loop Hot Leg Nozzle to Pipe Weld at v.c. Summer Station. In: Fontevraud International Symposium, September 23–27 (Paris) 2002 p 29–38 Reference Number 35038661 2002

  6. Soppet K.W., Shack J. W., Environmentally Assisted Cracking in Light Water Reactors, Washington: Argone National Laboratory, (NUREG/CR-4667), v 18, 2007, p 11–37.

  7. R.S. Chen, M.H. Ab Ghani, S. Ahmad, M.A. Tarawneh and S. Gan, Tensile, Thermal Degradation and Water Diffusion Behaviour of Gamma-radiation Induced Recycled Polymer Blend/rice Husk Composites: Experimental and Statistical Analysis, Composites Sci. Technol., 2021, 207, p 108748. https://doi.org/10.1016/j.compscitech.2021.108748

    Article  CAS  Google Scholar 

  8. M. Celina, E. Linde, D. Brunson, A. Quintana and N. Giron, Overview of Accelerated Aging and Polymer Degradation Kinetics for Combined Radiation-thermal Environments, Polym. Degrad. Stab., 2019, 2019(166), p 353–378. https://doi.org/10.1016/j.polymdegradstab.2019.06.007

    Article  CAS  Google Scholar 

  9. S. Liu, S.W. Veysey, L.S. Fifield and N. Bowler, Quantitative Analysis of Changes in Antioxidant in Crosslinked Polyethylene (XLPE) Cable Insulation Material Exposed to Heat and Gamma Radiation, Polym. Degrad. Stab., 2018, 156, p 252–258. https://doi.org/10.1016/j.polymdegradstab.2018.09.011

    Article  CAS  Google Scholar 

  10. Y. Liu, Y. Liu, H. Tan, C. Wang, H. Wei and Z. Guo, Structural Evolution and Degradation Mechanism of Vectran® Fibers upon Exposure to UV-radiation, Polym. Degrad. Stab., 2013, 98(9), p 1744–1753. https://doi.org/10.1016/j.polymdegradstab.2013.05.023

    Article  CAS  Google Scholar 

  11. Y. Gong, J. Tang, B.-N. Sun, Z.-G. Yang, X.-Q. Shi, X.-Q. Liu, Y.-C. Xie and X.-L. Xu, Comparative Study on Different Methods for Determination of Activation Energies of Nuclear Cable Materials, Polym. Test., 2018, 70, p 81–91. https://doi.org/10.1016/j.polymertesting.2018.06.029

    Article  CAS  Google Scholar 

  12. J. Robertson, Diamond-like Amorphous Carbon, Mater. Sci. Eng., 2002, 37, p 129–281. https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  13. S. Zhang, Z. Li, K. Luo, J. He, Y. Gao, A.V. Soldatov, V. Benavides, K. Shi, A. Nie, B. Zhang, W. Hu, M. Ma, Y. Liu, B. Wen, G. Gao, B. Liu, Y. Zhang, Y. Shu, D. Yu, X.-F. Zhou, Z. Zhao, B. Xu, L. Su, G. Yang, O.P. Chernogorova and Y. Tian, Discovery of Carbon-based Strongest and Hardest Amorphous Material, Nat. Sci. Rev., 2022 https://doi.org/10.1093/nsr/nwab140

    Article  Google Scholar 

  14. H. Cao, F. Liu, H. Li, F. Qi, X. Ouyang, N. Zhao and B. Liao, High Temperature Tribological Performance and Thermal Conductivity of Thick Ti/Ti-DLC Multilayer Coatings with the Application Potential for Al Alloy Pistons, Diam. Rel. Mater., 2021, 117, 108466. https://doi.org/10.1016/j.diamond.2021.108466

    Article  CAS  Google Scholar 

  15. X. Wei, S. Shi, C. Ning, Z. Lu and G. Zhang, Si-DLC Films Deposited by a Novel Method Equipped with a co-potential Auxiliary Cathode for Anti-Corrosion and Anti-wear Application, J. Mater. Sci. Technol., 2022, 109, p 114–128. https://doi.org/10.1016/j.jmst.2021.08.077

    Article  CAS  Google Scholar 

  16. Y. Shen, J. Luo, B. Liao, X. Zhang, Y. Zhao, X. Zeng, L. Chen, P. Pang and F. Bao, Tribocorrosion and Tribological Behavior of Ti-DLC Coatings Deposited by Filtered Cathodic Vacuum Arc, Diam. Rel. Mater., 2022, 125, p 108985. https://doi.org/10.1016/j.diamond.2022.108985

    Article  CAS  Google Scholar 

  17. R. Safari, F. Sohbatzadeh and T. Mohsenpour, Optical and Electrical Properties of N-DLC Films Deposited by Atmospheric Pressure DBD Plasma: Effect of Deposition Time, Surf. Interf., 2020, 21, 100795. https://doi.org/10.1016/j.surfin.2020.100795

    Article  CAS  Google Scholar 

  18. G. Gotzmann, J. Beckmann, B. Scholz, U. Herrmann and C. Wetzel, Low-Energy Electron-beam Modification of DLC Coatings Reduces Cell Count While Maintaining Biocompatibility, Surf. Coat. Technol., 2018, 336, p 34–38. https://doi.org/10.1016/j.surfcoat.2017.09.024

    Article  CAS  Google Scholar 

  19. A. Dychalska, P. Popielarski, W. Franków, K. Fabisiak, K. Paprocki and M. Szybowicz, Study of CVD Diamond Layers with Amorphous Carbon Admixture by Raman Scattering Spectroscopy, Mater. Sci. Poland, 2015, 33(4), p 799–805. https://doi.org/10.1515/msp-2015-0067

    Article  CAS  Google Scholar 

  20. C. Srisang, P. Asanithi, K. Siangchaew, A. Pokaipisit and P. Limsuwan, Characterization of SiC in DLC/a-Si Films Prepared by Pulsed Filtered Cathodic Arc Using Raman Spectroscopy and XPS, Appl. Surf. Sci., 2012, 258(15), p 5605–5609. https://doi.org/10.1016/j.apsusc.2012.02.036

    Article  CAS  Google Scholar 

  21. D. Adlienė, J. Laurikaitienė, V. Kopustinskas, Š Meškinis and V. Šablinskas, Radiation Induced Changes in Amorphous Hydrogenated DLC Films, Mater. Sci. Eng. B, 2008, 152(1–3), p 91–95. https://doi.org/10.1016/j.mseb.2008.06.005

    Article  CAS  Google Scholar 

  22. B. Safibonab, A. Reyhani, A. Nozad Golikand, S.Z. Mortazavi, S. Mirershadi and M. Ghoranneviss, Improving the Surface Properties of Multi-walled Carbon Nanotubes after Irradiation with Gamma Rays, Appl. Surf. Sci., 2011, 258, p 766–773. https://doi.org/10.1016/j.apsusc.2011.08.085

    Article  CAS  Google Scholar 

  23. Z. Lin, G. Shao, W. Liu, Y. Wang, H. Wang, H. Wang, B. Fan, H. Lu, H. Xu and R. Zhang, In-situ TEM Observations of the Structural Stability in Carbon Nanotubes, Nanodiamonds and Carbon Nano-onions Under Electron Irradiation, Carbon, 2022, 192, p 356–365. https://doi.org/10.1016/j.carbon.2022.02.079

    Article  CAS  Google Scholar 

  24. B. Campbell, Lattice Damage Caused by the Irradiation of Diamond, Nuclear Instrum. Met. Phys. Res., 2002, 476, p 680–685.

    Article  CAS  Google Scholar 

  25. J. Kwon and A.T. Motta, Gamma Displacement Cross-sections in Various Materials, Ann. Nucl. Energy, 2000, 27(18), p 1627–1642. https://doi.org/10.1016/S0306-4549(00)00024-4

    Article  CAS  Google Scholar 

  26. E. McCafferty, Introduction to Corrosion Science, Springer New York, New York, NY, 2010. https://doi.org/10.1007/978-1-4419-0455-3

    Book  Google Scholar 

  27. L. Cao, J. Liu, Y. Wan and P. Jibin, Corrosion and Tribocorrosion Behavior of W Doped DLC Coating in Artificial Seawater, Diamond and Related Materials, 2020, 109, p 108019. https://doi.org/10.1016/j.diamond.2020.108019

    Article  CAS  Google Scholar 

  28. C.P. Fenili, F.S. de Souza, G. Marin, S.M.H. Probst, C. Binder and A.N. Klein, Corrosion Resistance of Low-carbon Steel Modified by Plasma Nitriding and Diamond-like Carbon, Diam. Rel. Mater., 2017, 80, p 153–161. https://doi.org/10.1016/j.diamond.2017.11.001

    Article  CAS  Google Scholar 

  29. M. Sun, Y. Pang, C. Du, X. Li and Y. Wu, Optimization of Mo on the Corrosion Resistance of Cr-Advanced Weathering Steel Designed for Tropical Marine Atmosphere, Constr. Build. Mater., 2021, 302, 124346. https://doi.org/10.1016/j.conbuildmat.2021.124346

    Article  CAS  Google Scholar 

  30. G.H. Zhao, R.E. Aune and N. Espallargas, Tribocorrosion Studies of Metallic Biomaterials: The Effect of Plasma Nitriding and DLC Surface Modifications, J. Mech. Behav. Biomed. Mater., 2016, 63, p 100–114. https://doi.org/10.1016/j.jmbbm.2016.06.014

    Article  CAS  Google Scholar 

  31. H. Kovacı, Y.B. Bozkurt, A.F. Yetim, Ö. Baran and A. Çelik, Corrosion and Tribocorrosion Properties of Duplex Surface Treatments Consisting of Plasma Nitriding and DLC Coating, Tribol. Int., 2021, 156, 106823. https://doi.org/10.1016/j.triboint.2020.106823

    Article  CAS  Google Scholar 

  32. S.M. Fayed, D. Chen, S. Li, Y. Zhou, H. Wang and M.M. Sadawy, Corrosion Behavior and Passive Stability of Multilayer DLC-Si Coatings, Surf. Coat. Technol., 2022, 431, 128001. https://doi.org/10.1016/j.surfcoat.2021.128001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Aperam South America for kindly providing the metal plates that were used in this study and the CNPq.

Funding

This research was financially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, grant number 306291/2018-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa de Freitas Cunha Lins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, R.G., Santos, A.P., Soares, R.B. et al. Effect of Gamma Radiation on the Electrochemical Behavior of AISI 8620 Steel Coated with Diamond-Like Carbon. J. of Materi Eng and Perform 32, 6226–6235 (2023). https://doi.org/10.1007/s11665-022-07561-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07561-2

Keywords

Navigation