Skip to main content
Log in

Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by High-Pressure Torsion under Ageing Treatment

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the samples after high-pressure torsion (HPT) were heated with temperatures ranging from 800 to 950 °C for 1, 2, 6 and 12 h to optimize the microstructure of deformed Ti-22Al-25Nb alloy and enhance its mechanical properties. The results revealed that B2 and O phases developed into α2 phase above 900 °C. Particle spheroidization occurred during the ageing process. However, the lamellar B2 and O phases still existed when the ageing temperature reached 950 °C, indicating that the spheroidization process was incomplete. Most α2 phases were distributed at the interface of O and B2 phases. The orientation relationships (OR) among α2, O and B2 phases were [0001]α2 // [001]B2 and [0001]α2 // [001]O. It indicated the phase transformation of O + B2 → α2. Moreover, the micro-hardness of Ti-22Al-25Nb alloy with a maximum value of ~ 475 HV decreased constantly with increase in ageing temperature. The micro-hardness first decreased to the minimum value of ~ 315 HV and then increased with increase in ageing treatment time. The micro-hardness depended on the content of the phase composition and particle size. The relation of micro-hardness to microstructure was analyzed using multiple regression analysis schedules. It should be noted that the calculated values agreed with the experimental results. This means that the micro-hardness of Ti-22Al-25Nb alloy meaningfully depends on the phase volume fraction and particle size in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.K. Gogi, T.K. Nandy, D. Banerjee et al., Microstructure and Mechanical Properties of Orthorhombic Alloys in the Ti-Al-Nb System, Intermetallics, 1998, 6, p 741–748.

    Article  Google Scholar 

  2. S. Emura, K. Tsuzaki, and K. Tsuchiya, Improvement of Room Temperature Ductility for Mo and Fe Modified Ti2AlNb Alloy, Mater. Sci. Eng. A, 2010, 528, p 355–362.

    Article  Google Scholar 

  3. C.J. Boehlert, Microstructure, Creep, and Tensile behavior of a Ti-12Al-38Nb (at.%) Beta+Orthorhombic Alloy, Mater. Sci. Eng. A, 1999, 267, p 82–98.

    Article  Google Scholar 

  4. C.J. Boehlert, B.S. Majumdar, V. Seetharaman et al., Part I. the Microstructural Evolution in Ti-Al-Nb O+Bcc Orthorhombic Alloys, Metall. Mater. Trans. A, 1999, 30, p 2305–2323.

    Article  Google Scholar 

  5. M. Bououdina and Z.X. Guo, Characterisation of Structural Stability of (Ti (H2)+ 22Al+ 23Nb) Powder Mixtures during Mechanical Alloying, Mater. Sci. Eng. A, 2002, 332(210), p 210–222.

    Article  Google Scholar 

  6. Y. Mao, S.Q. Li, J.W. Zhang et al., Microstructure and Tensile Properties of Orthorhombic Ti-Al-Nb-Ta Alloys, Intermetallics, 2000, 8, p 659–662.

    Article  CAS  Google Scholar 

  7. S.R. Dey, S. Roy, S. Suwas et al., Annealing Reponse of the Intermetallic Alloy Ti-22Al-25Nb, Intermetallics, 2010, 18, p 1122–1131.

    Article  CAS  Google Scholar 

  8. S. Emura, A. Araoka, and M. Hagiwara, B2 Grain Size Refinement and Its Effect on Room Temperature Tensile Properties of a Ti-22Al-27Nb Orthorhombic Intermetallic Alloy, Scr. Mater., 2003, 48, p 629–634.

    Article  CAS  Google Scholar 

  9. Y. Wu, H.C. Kou, Z.H. Wu et al., Dynamic Recrystallization and Texture Evolution of Ti-22Al-25Nb Alloy during Plane-Strain Compression, J. Alloys Compd, 2018, 749, p 844–852.

    Article  CAS  Google Scholar 

  10. J. Kumpfert, Intermetallic Alloys Based on Orthorhombic Titanium Aluminide, Adv. Eng. Mater., 2001, 3, p 851–864.

    Article  CAS  Google Scholar 

  11. H.Z. Zhao, B. Lu, M. Tong et al., Tensile behavior of Ti-22Al-24Nb-0.5Mo in the Range 25–650 °C, Mater. Sci. Eng. A, 2017, 679, p 455–464.

    Article  CAS  Google Scholar 

  12. G.F. Wang, J.L. Yang, X.Y. Jiao et al., Microstructure and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by Elemental Powder Metallurgy, Mater. Sci. Eng. A, 2016, 654, p 69–76.

    Article  CAS  Google Scholar 

  13. M.R. Shagiev, R.M. Galeyev, O.R. Valiakhmetov et al., Improved Mechanical Properties of Ti2AlNb-Based Intermetallic Alloys and Composites, Adv. Mater. Res, 2009, 59, p 105–108.

    Article  CAS  Google Scholar 

  14. J.L. Yang, G.F. Wang, W.C. Zhang et al., Microstructure Evolution and Mechanical Properties of P/M Ti-22Al-25Nb Alloy during Hot Extrusion, Mater. Sci. Eng. A, 2017, 699, p 210–216.

    Article  CAS  Google Scholar 

  15. M. Tikhonova, A. Belyakov, and R. Kaibyshev, Strain-Induced Grain Evolution in An Austenitic Stainless Steel under Warm Multiple Forging, Mater. Sci. Eng. A, 2013, 564, p 413–422.

    Article  CAS  Google Scholar 

  16. X.C. Zhao, X.R. Yang, X.Y. Liu et al., The Processing of Pure Titanium Through Multiple Passes of ECAP at Room Temperature, Mater. Sci. Eng. A, 2010, 527, p 6335–6339.

    Article  Google Scholar 

  17. M.A. Afifi, Y.C. Wang, P.H.R. Pereira et al., Effect of Heat Treatments on the Microstructures and Tensile Properties of an Ultrafine-Grained Al-Zn-Mg Alloy Processed by ECAP, J. Alloys Compd., 2018, 749, p 567–574.

    Article  CAS  Google Scholar 

  18. D.H. Shin, I. Kim, J. Kim et al., Microstructure Development during Equal-Channel Angular Pressing of Titanium, Acta. Mater., 2003, 51, p 983–996.

    Article  CAS  Google Scholar 

  19. N. Ye, X.P. Ren, and J.H. Liang, Microstructure and Mechanical Properties of Ni/Ti/Al/Cu Composite Produced by Accumulative Roll Bonding (ARB) at Room Temperature, J. Mater. Res. Technol, 2020, 9, p 5524–5532.

    Article  CAS  Google Scholar 

  20. S.H. Seyed Ebrahimi, K. Dehghani, J. Aghazadeh et al., Investigation on Microstructure and Mechanical Properties of Al/Al-Zn-Mg-Cu Laminated Composite Fabricated by Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2018, 718, p 311–320.

    Article  Google Scholar 

  21. R.N. Dehsorkhi, F. Qods, and M. Tajally, Investigation on Microstructure and Mechanical Properties of Al-Zn Composite during Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2011, 530, p 63–72.

    Article  CAS  Google Scholar 

  22. A. Zafari, X.S. Wei, W. Xu et al., Formation of Nanocrystalline β Structure in Metastable Beta Ti Alloy during High Pressure Torsion: The Role Played by Stress Induced Martensitic Transformation, Acta. Mater., 2015, 97, p 146–155.

    Article  CAS  Google Scholar 

  23. T. Müller, M.W. Kapp, A. Bachmaier et al., Ultrahigh-Strength Low Carbon Steel Obtained from the Martensitic State Via High Pressure Torsion, Acta. Mater., 2019, 166, p 168–177. https://doi.org/10.1016/j.actamat.2018.12.028

    Article  CAS  Google Scholar 

  24. R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar et al., Using Finite Element Modeling to Examine the Temperature Distribution in Quasi-Constrained High-Pressure Torsion, Acta Mater, 2012, 60, p 3190–3198. https://doi.org/10.1016/j.msea.2011.07.040

    Article  CAS  Google Scholar 

  25. W.T. Sun, C. Xu, X.G. Qiao et al., Evolution of Microstructure and Mechanical Properties of An As-Cast Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr Alloy Processed by High Pressure Torsion, Mater. Sci. Eng. A, 2017, 700, p 312–320.

    Article  CAS  Google Scholar 

  26. W.T. Sun, M.Y. Zheng, C. Xu et al., Altered Ageing behaviour of a Nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr Alloy Processed by High Pressure Torsion, Acta. Mater., 2018, 151, p 260–270. https://doi.org/10.1016/j.actamat.2018.04.003

    Article  CAS  Google Scholar 

  27. H. Shahmir and T.G. Langdon, Using Heat Treatments, High-Pressure Torsion and Post-Deformation Annealing to Optimize the Properties of Ti-6Al-4V Alloys, Acta. Mater., 2017, 141, p 419–426.

    Article  CAS  Google Scholar 

  28. J. Yang, G. Wang, J.M. Park, and H.S. Kim, Microstructural behavior and Mechanical Properties of Nanocrystalline Ti-22Al-25Nb Alloy Processed by High-Pressure Torsion, Mater. Charact., 2019, 151, p 129–136.

    Article  CAS  Google Scholar 

  29. K. Edalati, T. Daio, S. Lee et al., High Strength and Superconductivity in Nanostructured Niobium-Titanium Alloy by High-Pressure Torsion and Annealing: Significance of Elemental Decomposition and Supersaturation, Acta. Mater., 2014, 80, p 149–158.

    Article  CAS  Google Scholar 

  30. J.B. Jia, K.F. Zhang, and Z. Lu, Dynamic Globularization Kinetics of a Powder Metallurgy Ti-22Al-25Nb Alloy with Initial Lamellar Microstructure during Hot Compression, J. Alloys Compd., 2014, 617, p 429–436.

    Article  CAS  Google Scholar 

  31. Z.Q. Zhang, L.M. Dong, Y. Yang et al., Microstructure Refinement of a Dual Phase Titanium Alloy by Severe Room Temperature Compression, Trans. Nonferrous Met. Soc. Chin., 2012, 22, p 2604–2608. https://doi.org/10.1016/S1003-6326(11)61506-9

    Article  CAS  Google Scholar 

  32. C.T. Wang, A.G. Fox, and T.G. Langdon, Microstructural Evolution in Ultrafine-Grained Titanium Processed by High-Pressure Torsion Under Different Pressures, J. Mater. Sci., 2014, 49, p 6558–6564.

    Article  CAS  Google Scholar 

  33. M.T. Seshacharyulu, S.C. Mederious, W.G. Frazier et al., Hot Working of Commercial Ti-6Al-4V with an Equiaxed α-β Microstructure: Materials Modeling Considerations, Mater. Sci. Eng. A, 2000, 284, p 184–194.

    Article  Google Scholar 

  34. P. Lin, T.T. Tang, C.Z. Chi et al., Dynamic Globularization Behavior of O-phase Lamellae in Ti-22Al-25Nb (at.%) Alloy during Deformation at Elevated Temperatures, Rare. Metal. Mater. Eng., 2018, 47, p 416–422.

    Article  CAS  Google Scholar 

  35. C. Xue, W.D. Zeng, B. Xu et al., B2 Grain Growth and Particle Pinning Effect of Ti-22Al-25Nb Orthorhombic Intermetallic Alloy during Heating Process, Intermetallics, 2012, 29, p 41–47.

    Article  CAS  Google Scholar 

  36. H.V. Atkinson, Theories of Normal Grain Growth in Pure Single Phase Systems, Acta. Mater., 1988, 36, p 469–491.

    Article  CAS  Google Scholar 

  37. H. Sun, L.M. Yu, Y.C. Liu et al., Effect of Heat Treatment Processing on Microstructure and Tensile Properties of Ti-6Al-4V-10Nb Alloy, Trans. Nonferrous Met. Soc. Chin., 2019, 29, p 59–66.

    Article  CAS  Google Scholar 

  38. B. Shao, Y.Y. Zong, D.S. Wen et al., Investigation of the Phase Transformations in Ti-22Al-25Nb Alloy, Mater. Charact., 2016, 114, p 75–78.

    Article  CAS  Google Scholar 

  39. K. Muraleedharan, D. Banerjee, S. Banerjee et al., The α2-to-O Transformation in Ti-Al-Nb Alloys, Philos. Mag. A, 1995, 71, p 1011–1036.

    Article  CAS  Google Scholar 

  40. C. Xue, W.D. Zeng, W. Wang et al., Quantitative Analysis on Microstructure Evolution and Tensile Property for the Isothermally Forged Ti2AlNb Based Alloy during Heat Treatment, Mater. Sci. Eng. A, 2013, 573, p 183–189.

    Article  CAS  Google Scholar 

  41. J.B. Jia, W.C. Liu, Y. Xu et al., Microstructure Evolution, B2 Grain Growth Kinetics and Fracture behaviour of a Powder Metallurgy Ti-22Al-25Nb Alloy Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2018, 730, p 106–118.

    Article  CAS  Google Scholar 

  42. W. Wang, W.D. Zeng, C. Xue et al., Quantitative Analysis of the Effect of Heat Treatment on Microstructural Evolution and Microhardness of an Isothermally Forged Ti-22Al-25Nb (at%) Orthorhombic Alloy, Intermetallics, 2014, 5, p 29–37.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the National Natural Science Foundation of China (No. 51905123), Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (HIT.NSRIF.2020091), Major Science and Technology Innovation Project of Shandong Province (2020CXGC010303) and Key project of Natural Science Foundation of China (U1937205).

Author information

Authors and Affiliations

Authors

Contributions

HL was involved in conceptualization, writing—original draft, formal analysis, carried out the experiment, planned the experiments. WZ helped in conceptualization, writing—original draft, formal analysis, planned the experiments. JY contributed to supervision, formal analysis, planned the experiments. JP carried out the experiment. WC, GC and GW were involved in supervision.

Corresponding author

Correspondence to Jianlei Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, W., Yang, J. et al. Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb Alloy Fabricated by High-Pressure Torsion under Ageing Treatment. J. of Materi Eng and Perform 32, 4902–4910 (2023). https://doi.org/10.1007/s11665-022-07465-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07465-1

Keywords

Navigation