Skip to main content
Log in

Formation and Evolution of Corrosion Product Film on 304 Stainless Steel in HCl-Based Pickling Solution under Chemical Oxidation

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the formation and evolution of a corrosion product film on a 304 stainless steel exposed to an HCl pickling solution containing H2O2 were evaluated. Electrochemical polarization, spectroscopy, and characterization techniques including scanning electron microscopy, energy-dispersive x-ray spectroscopy, confocal laser scanning microscopy, and x-ray photoelectron spectroscopy were employed to investigate the characteristics of the corrosion product film and its effect on the corrosion of the stainless steel. The composition and structure of the corrosion product films were governed by the chemical oxidation of H2O2, which was dependent on the H2O2 concentration. The formation of a loosened CrCl3, FeCl2, and FeCl3 salt film occurs in the presence of 0.05-M H2O2. With a higher H2O2 concentration (0.15–0.60 M), the Fenton’s reaction creates an environment for the production of chromium oxides and hydroxides. A compact film consisting of Cr(OH)3 and Cr2O3 covers the stainless steel. The dissolution of metal is then governed by the random availability of cation vacancies at the metal/film interface rather than the lattice structure of the metal, which contributes to the anodic brightening of the stainless steel. The compact film can dissolve in the HCl–H2O2 solution and transform into chloride salts again. Once the compact film breaks without self-repair, it causes a local attack at grain boundaries of the stainless steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Shamsolhodaei, J.P. Oliveira, N. Schell, E. Maawad, B. Panton and Y.N. Zhou, Controlling Intermetallic Compounds Formation during laser Welding of niti to 316l Stainless Steel, Intermetallics, 2020, 116, p106656. (in English)

    Article  Google Scholar 

  2. T.A. Rodrigues, J.D. Escobar, J. Shen et al., Effect of Heat Treatments on 316 Stainless Steel Parts Fabricated by Wire and Arc Additive Manufacturing: Microstructure and Synchrotron X-Ray Diffraction Analysis, Addit. Manuf., 2021, 48, p102428. (in English)

    Google Scholar 

  3. J.P. Oliveira, J. Shen, Z. Zeng et al., Dissimilar laser welding of a cocrfemnni high entropy alloy to 316 stainless steel [J], Scr. Mater., 2022, 206, 114219. (in English)

    Article  CAS  Google Scholar 

  4. P. Sathiyamoorthi and H.S. Kim, High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties, Prog. Mater. Sci., 2022, 123, p100709. (in English)

    Article  Google Scholar 

  5. A.B. Rhouma, H. Sidhom, C. Braham, J. Lédion and M. Fitzpatrick, Effects of Surface Preparation on Pitting Resistance, Residual Stress, and Stress Corrosion Cracking in Austenitic Stainless Steels, J. Mater. Eng. Perform., 2001, 10(5), p 507–514. (in English)

    Article  CAS  Google Scholar 

  6. D. Lindell and R. Pettersson, Pickling of Process-Oxidised Austenitic Stainless Steels in HNO3-HF Mixed Acid, Steel Res. Int., 2010, 81(7), p 542–551. (in English)

    Article  CAS  Google Scholar 

  7. M. Ito RT, Y. Seino, A. Yamamoto, Y. Kawabata, K. Uchino, Descaling Behavior of Type430 Hot-Rolled Stainless Steel Coil, Jpn. J. Appl. Phys. 36, 1997, 36(12R), p7404–7410, in English

  8. D.P. Whittle, D.J. Evans, D.B. Scully and G.C. Wood, Compositional Changes in the Underlying Alloy During the Protective Oxidation of Alloys, Acta Mater., 1967, 15(9), p 1421–1430. (in English)

    Article  CAS  Google Scholar 

  9. N. Azzerri AT, Potentiostatic pickling a new technique for improving stainless steel processing, J. Appl. Electrochem., 1976, 6(4), p347-352, in English

  10. L.F. Li and J. Celis, Pickling of Austenitic Stainless Steels (a review), Can. Metall. Q., 2013, 42(3), p 365–376. (in English)

    Article  Google Scholar 

  11. M. Hudson, Pickling of Hot Rolled Strip: an Overview, Iron Steelmaker., 1991, 18(9), p 31–39. (in English)

    CAS  Google Scholar 

  12. S. Yamaguchi, T. Yoshida and T. Saito, Improvement in Descaling of Hot Strip by Hydrochloric Acid, ISIJ Int., 1994, 34(8), p 670–678. (in English)

    Article  CAS  Google Scholar 

  13. M. Jiang, X. Li, Y. Yue, P. Shi and C. Liu, Effect of Hydrochloric acid on Electrochemical behaviour of 430 Stainless Steel, Mater. Res. Innovations., 2014, 18, p S5-62. (in English)

    Article  Google Scholar 

  14. N. Sanders, Environmentally Friendly Stainless Steel Pickling, Anti-Corros. Methods Mater., 1997, 44(1), p 20–25. (in English)

    Article  CAS  Google Scholar 

  15. L. Narvaez, J. Miranda and A. Ronquillo, Stainless Steel Pickling using Ecologies Friendly Mixtures Composed of H2O2-H2SO4-F-Ions, Rev. Metal., 2013, 49(2), p 145–154. (in English)

    CAS  Google Scholar 

  16. L.F. Li, P. Caenen, M. Daerden, D. Vaes, G. Meers, C. Dhondt and J. Celis, Mechanism of Single and Multiple Step Pickling of 304 Stainless Steel in Acid Electrolytes, Corros. Sci., 2005, 47(5), p 1307–1324. (in English)

    Article  CAS  Google Scholar 

  17. Yue YY, Liu CJ, Shi PY, Jiang MF Qin LY, Fan GW, Descaling behavior of 430 hot-rolled stainless steel in HCl-based solution, J. Iron Steel Res, Int., 2016, 23(3), p190-196, in English

  18. A. Tamba and N. Azzerri, Anodic Pickling Of Stainless Steels in Sulphuric Acid, J. Appl. Electrochem., 1972, 2(3), p 175–181. https://doi.org/10.1007/BF02354974 (in English)

    Article  CAS  Google Scholar 

  19. G. Bombara, A. Tamba and N. Azzerri, Potentiostatic Anodic Pickling of Stainless Steels, J Electrochem Soc, 1971, 118(4), p 676. https://doi.org/10.1149/1.2408140

    Article  CAS  Google Scholar 

  20. J. Hildén, J. Virtanen, O. Forsén and J. Aromaa, Electrolytic Pickling of Stainless Steel Studied by Electrochemical Polarisation And DC Resistance Measurements Combined With Surface Analysis, Electrochimica Acta, 2001, 46(24–25), p 3859–3866. https://doi.org/10.1016/S0013-4686(01)00673-9

    Article  Google Scholar 

  21. B.S. Covino Jr., J.V. Scalera, T.J. Drisoll and J.P. Carter, Dissolution Behavior of 304 Stainless Steel in HNO3-HF Mixtures, Metall. Trans. A., 1986, 17(1), p 137–149. (in English)

    Article  Google Scholar 

  22. L.F. Li, M. Daerden, P. Caenen and J.P. Celis, Electrochemical Behavior of Hot-Rolled 304 Stainless Steel during Chemical Pickling in HCl-Based Electrolytes, J. Electrochem. Soc., 2006, 153(5), p B145–B150. (in English)

    Article  CAS  Google Scholar 

  23. Y.Y. Yue, C.J. Liu, P.Y. Shi and M.F. Jiang, Corrosion of Hot-Rolled 430 Stainless Steel in HCl-Based Solution, Corros. Eng., Sci. Technol., 2016, 51(8), p 581–587. https://doi.org/10.1080/1478422X.2016.1167303

    Article  CAS  Google Scholar 

  24. Q. Xie, P.Y. Shi, C.J. Liu and M. Jiang, Effect of Different Oxidants on HCl-Based Pickling Process of 430 Stainless Steel, J. Iron Steel Res, Int., 2016, 23(8), p 778–783. (in English)

    Article  Google Scholar 

  25. L.F. Li and J.P. Celis, Intergranular Corrosion of 304 Stainless Steel Pickled in Acidic Electrolytes, Scr. Mater., 2004, 51(10), p 949–953. (in English)

    Article  CAS  Google Scholar 

  26. L.-Fu. Li, Peter Caenen and Jean-Pierre. Celis, Chemical Pickling of 304 Stainless Steel in Fluoride- and Sulfate-Containing Acidic Electrolytes, J. Electrochem Soc, 2005, 152(9), p B352. https://doi.org/10.1149/1.1990127

    Article  CAS  Google Scholar 

  27. R.D. Grimm and D. Landolt, Salt Films Formed during Mass Transport Controlled Dissolution Of Iron-Chromium Alloys in Concentrated Chloride Media, Corros. Sci., 1994, 36(11), p 1847–1468. (in English)

    Article  CAS  Google Scholar 

  28. H.C. Kuo and D. Landolt, Rotating Disc Electrode Study of Anodic Dissolution or Iron In Concentrated Chloride Media, Electrochim. Acta, 1975, 20(5), p 393–399. (in English)

    Article  CAS  Google Scholar 

  29. P. Russell and John Newman, Anodic Dissolution of Iron in Acidic Sulfate Electrolytes: I . Formation and Growth of a Porous Salt Film, J. Electrochem. Soc., 1986, 133(1), p 59–69. https://doi.org/10.1149/1.2108541

    Article  CAS  Google Scholar 

  30. F. Hunkeler, A. Krolikowski and H. Bohni, A study of the Solid Salt Film on Nickel And Stainless Steel, Electrochemi Acta, 1987, 32(4), p 615–620. (in English)

    Article  CAS  Google Scholar 

  31. F.K. Crundwell, A Model for the Ac-Impedance of an Electrode Coated by A Precipitated Salt Film, Electrochemi Acta, 1991, 36(7), p 1183–1189. (in English)

    Article  CAS  Google Scholar 

  32. R.D. Grimm, A.C. West and D. Landolt, AC Impedance Study of Anodically Formed Salt Films on Iron In Chloride Solution, J. Electrochem. Soc., 1992, 139(6), p 1622–1629. (in English)

    Article  CAS  Google Scholar 

  33. M. Saremi and E. Mahallati, A study on Chloride-Induced Depassivation of mild Steel In Simulated Concrete Pore Solution, Cement Concrete Res., 2002, 32(12), p 1915–1921. https://doi.org/10.1016/S0008-8846(02)00895-5

    Article  CAS  Google Scholar 

  34. Z. Zheng and Y. Zheng, Effects of Surface Treatments on the Corrosion and Erosion-Corrosion of 304 Stainless Steel in 3.5% NaCl Solution, Corros. Sci., 2016, 112, p 657–668. (in English)

    Article  CAS  Google Scholar 

  35. I. G, E. K, A. L, S. UWE, Curve Fitting of Cr 2p Photoelectron Spectra of Cr2O3 and CrF3, Surf. Interface Anal., 1995, 23(13), 887-891, in English

  36. D. Kong, X. Ni, C. Dong et al., Bio-Functional and Anti-Corrosive 3d Printing 316l Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101. (in English)

    Article  CAS  Google Scholar 

  37. M. Biesinger, C. Brown, J. Mycroft, R. Davidson and N. McIntyre, X-ray Photoelectron Spectroscopy Studies of Chromium Compounds, Surf. Interface Anal., 2004, 36(12), p 1550–1563. (in English)

    Article  CAS  Google Scholar 

  38. G.C. Allen, M.T. Curtis and A.J. Hooper, X-ray Photoelectron Spectroscopy of Chromium–Oxygen Systems, J. Chem. Soc. Dalton Trans., 1973, 16, p 1675–1683. (in English)

    Article  Google Scholar 

  39. A. Grosvenor, B. Kobe, M. Biesinger and N. McIntyre, Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds, Surf. Interface Anal., 2004, 36(12), p 1564-p1574. (in English)

    Article  CAS  Google Scholar 

  40. C.P. Li, A. Proctor and D.M. Hercules, Curve Fitting Analysis of ESCA Ni 2p Spectra of Nickel-Oxygen Compounds and Ni/Al2O3 Catalysts, Appl Spectrosc, 1984, 38(6), p 880–886. (in English)

    Article  CAS  Google Scholar 

  41. A.N. Mansour, Characterization of NiO by XPS, Surf. Sci. Spectra., 1994, 3(3), p 231–238. (in English)

    Article  CAS  Google Scholar 

  42. J. Morlidge, P. Skeldon, G. Thompson, H. Habazaki, K. Shimizu and G. Wood, Formation and the Efficiency of Anodic Film Growth on Aluminium, Electrochim. Acta, 1999, 44(14), p 2423–2435. (in English)

    Article  CAS  Google Scholar 

  43. M. Jamesh, S. Kumar and T.S.N. Sankara Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21 Mg alloy in ringer’s Solution - Long Term Evaluation by EIS, Corros. Sci., 2011, 53(2), p 645–654. (in English)

    Article  CAS  Google Scholar 

  44. W.P. Kwan and B.M. Voelker, Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems, Environ. Sci. Technol., 2003, 37(6), p 1150-p1158. (in English)

    Article  CAS  Google Scholar 

  45. Yingying Yue, Chengjun Liu, Peiyang Shi and Maofa Jiang, Passivity of Stainless Steel in Sulphuric Acid under Chemical Oxidation, Corrosion Engineering, Science and Technology, 2017, 53(3), p 173–182. https://doi.org/10.1080/1478422X.2017.1388648

    Article  Google Scholar 

  46. L. Narváez, E. Cano and J.M. Bastidas, Effect of Ferric ions in AISI 316L Stainless Steel Pickling using an Environmentally-Friendly H2SO4-HF-H2O2 Mixture, Mater. Corros., 2003, 54(2), p 84–87. (in English)

    Article  Google Scholar 

  47. Y. Song, D. Shan, R. Chen, F. Zhang and E.-H. Han, Biodegradable Behaviors of AZ31 Magnesium Alloy in Simulated Body Fluid, Mater. Sci. Eng., 2009, 29(3), p 1039–1045. (in English)

    Article  CAS  Google Scholar 

  48. B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur and M. Musiani, Constant-Phase-Element Behavior caused by Resistivity Distributions in Films, Journal of The Electrochemical Society, 2010, 157(12), p C458. https://doi.org/10.1149/1.3499565

    Article  CAS  Google Scholar 

  49. J. Marín-Cruz, R. Cabrera-Sierra, M.A. Pech-Canul and I. González, EIS Study on Corrosion and Scale Processes and their Inhibition in Cooling System Media, Electrochim. Acta., 2006, 51(8), p 1847-p1854. (in English)

    Article  Google Scholar 

  50. T. Hoar, D. Mears and G. Rothwell, The Relationships between Anodic Passivity, Brightening and Pitting, Corros. Sci., 1965, 5(4), p 279–289. (in English)

    Article  CAS  Google Scholar 

  51. T. Hoar, The Production and Breakdown of the Passivity of Metals, Corros. Sci., 1967, 7(6), p 341-p355. (in English)

    Article  CAS  Google Scholar 

  52. M. Mohammadi, L. Choudhary, I.M. Gadala and A. Alfantazi, Electrochemical and Passive Layer Characterizations of 304L, 316L, and Duplex 2205 Stainless Steels in Thiosulfate Gold Leaching Solutions, J. Electrochem. Soc., 2016, 163(14), p C883–C894. (in English)

    Article  CAS  Google Scholar 

  53. M. Urquidi-Macdonald and D.D. Macdonald, Theoretical Distribution Functions for the Breakdown of Passive Films, J. Electrochem. Soc., 1987, 134(1), p 41–46. (in English)

    Article  CAS  Google Scholar 

  54. L.F. Lin, C.Y. Chao and D.D. Macdonald, A Point Defect Model for Anodic Passive Films: II . Chemical Breakdown and Pit Initiation, J. Electrochem. Soc., 1981, 128(6), p 1194–1198. https://doi.org/10.1149/1.2127592

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Doctoral Scientific Research Foundation of LiaoNing Province (No. 2020-BS-231) and National Natural Science Foundation of China (No. 51774087). Yingying Yue acknowledges the China Scholarship Council for their financial assistance during her studies in Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Yue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Liu, C. & Jiang, M. Formation and Evolution of Corrosion Product Film on 304 Stainless Steel in HCl-Based Pickling Solution under Chemical Oxidation. J. of Materi Eng and Perform 32, 3995–4004 (2023). https://doi.org/10.1007/s11665-022-07390-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07390-3

Keywords

Navigation