Skip to main content
Log in

Optimization of Printing Parameters to Achieve High-Density 316L Stainless Steel Manufactured by Binder Jet 3D Printing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Binder jet 3D printing (BJ3DP) can manufacture large-scale complex and customizable metal parts with low cost and high efficiency, showing extensive application prospect in the field of manufacturing engineering. However, very few studies have focused on optimizing printing parameters to achieve near-full densification BJ3DP 316L stainless steel (SS) parts. Therefore, the printing-related parameters, i.e., layer thickness, roller traverse speed, and binder concentration, were optimized in the present study. The dimensional quality of green samples revealed that the layer thickness of 125 μm, binder concentration of 60%, and roller traverse speed of 20 pps were the optimal parameters for printing green samples. Following sintering, the BJ3DP 316L SS samples printed by the optimal parameters exhibited a relative density of ~ 99.5%, along with X-/Y-/Z-direction linear shrinkages of ~ 18.7, ~ 17.4, and ~ 19.8%, respectively, in good agreement with those of the simulation results. Z-direction showed the highest value of linear shrinkage due to the presence of gravity during sintering. Meanwhile, the sintered 316L SS samples printed by the optimal parameters possess Vickers hardness of ~ 192 HV, which exceeds the values of the BJ3DP-produced 316L SS samples reported in the available literature, arising from their high relative density and the presence of ~ 6.9 vol.% δ-ferrite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Sachs, M. Cima and J. Cornie, Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a Cad Model, CIRP Ann., 1990, 39, p 201–204.

    Article  Google Scholar 

  2. A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana and M. Chmielus, Binder Jet 3d Printing—Process Parameters, Materials, Properties, Modeling, and Challenges, Prog. Mater. Sci., 2021, 119, 100707.

    Article  CAS  Google Scholar 

  3. A. Ramalho, T.G. Santos, B. Bevans, Z. Smoqi, P. Rao and J.P. Oliveira, Effect of Contaminations on the Acoustic Emissions During Wire and Arc Additive Manufacturing of 316l Stainless Steel, Addit. Manuf., 2022, 51, 102585.

    CAS  Google Scholar 

  4. T.A. Rodrigues, J.D. Escobar, J. Shen, V.R. Duarte, G.G. Ribamar, J.A. Avila, E. Maawad, N. Schell, T.G. Santos and J.P. Oliveira, Effect of Heat Treatments on 316 Stainless Steel Parts Fabricated by Wire and Arc Additive Manufacturing: Microstructure and Synchrotron X-Ray Diffraction Analysis, Addit. Manuf., 2021, 48, 102428.

    CAS  Google Scholar 

  5. I. Rishmawi, M. Salarian and M. Vlasea, Tailoring Green and Sintered Density of Pure Iron Parts Using Binder Jetting Additive Manufacturing, Addit. Manuf., 2018, 24, p 508–520.

    CAS  Google Scholar 

  6. Y. Tang, Y. Zhou, T. Hoff, M. Garon and Y.F. Zhao, Elastic Modulus of 316 Stainless Steel Lattice Structure Fabricated Via Binder Jetting Process, Mater. Sci. Technol., 2016, 32, p 648–656.

    Article  CAS  Google Scholar 

  7. Y.J. Wang and Y.F. Zhao, Investigation of Sintering Shrinkage in Binder Jetting Additive Manufacturing Process. In: 45th SME North American Manufacturing Research Conference (NAMRC 45), 2017, 10, p 779–790

  8. Z. Chen, W. Chen, L. Chen, D. Zhu, Q. Chen and Z. Fu, Influence of Initial Relative Densities on the Sintering Behavior and Mechanical Behavior of 316 l Stainless Steel Fabricated by Binder Jet 3d Printing, Mater. Today Commun., 2022, 31, 103369.

    Article  CAS  Google Scholar 

  9. P. Nandwana, A.M. Elliott, D. Siddel, A. Merriman, W.H. Peter and S.S. Babu, Powder Bed Binder Jet 3d Printing of Inconel 718: Densification, Microstructural Evolution and Challenges☆, Curr. Opin. Solid State Mat. Sci., 2017, 21, p 207–218.

    Article  CAS  Google Scholar 

  10. A. Mostafaei, P.R. De Vecchis, I. Nettleship and M. Chmielus, Effect of Powder Size Distribution on Densification and Microstructural Evolution of Binder-Jet 3d-Printed Alloy 625, Mater. Des., 2019, 162, p 375–383.

    Article  CAS  Google Scholar 

  11. A. Mostafaei, J. Toman, E.L. Stevens, E.T. Hughes, Y.L. Krimer and M. Chmielus, Microstructural Evolution and Mechanical Properties of Differently Heat-Treated Binder Jet Printed Samples from Gas-and Water-Atomized Alloy 625 Powders, Acta Mater., 2017, 124, p 280–289.

    Article  CAS  Google Scholar 

  12. E. Wheat, M. Vlasea, J. Hinebaugh and C. Metcalfe, Data Related to the Sinter Structure Analysis of Titanium Structures Fabricated Via Binder Jetting Additive Manufacturing, Data Brief, 2018, 20, p 1029–1038.

    Article  Google Scholar 

  13. J.J.S. Dilip, H. Miyanaji, A. Lassell, T.L. Starr and B. Stucker, A Novel Method to Fabricate TiAl Intermetallic Alloy 3d Parts Using Additive Manufacturing, Def. Technol., 2017, 13, p 72–76.

    Article  Google Scholar 

  14. E. Stevens, S. Schloder, E. Bono, D. Schmidt and M. Chmielus, Density Variation in Binder Jetting 3d-Printed and Sintered Ti-6al-4v, Addit. Manuf., 2018, 22, p 746–752.

    CAS  Google Scholar 

  15. A.Y. Kumar, Y. Bai, A. Eklund and C.B. Williams, The Effects of Hot Isostatic Pressing on Parts Fabricated by Binder Jetting Additive Manufacturing, Addit. Manuf., 2018, 24, p 115–124.

    Google Scholar 

  16. Y. Bai, G. Wagner and C.B. Williams, Effect of Particle Size Distribution on Powder Packing and Sintering in Binder Jetting Additive Manufacturing of Metals, J. Manuf. Sci. Eng., 2017, 139, 081019.

    Article  Google Scholar 

  17. Y. Bai and C.B. Williams, The Effect of Inkjetted Nanoparticles on Metal Part Properties in Binder Jetting Additive Manufacturing, Nanotechnology, 2018, 29, 395706.

    Article  Google Scholar 

  18. D. Karlsson, G. Lindwall, A. Lundback, M. Amnebrink, M. Bostrom, L. Riekehr, M. Schuisky, M. Sahlberg and U. Jansson, Binder Jetting of the AlCoCrFeNi Alloy, Addit. Manuf., 2019, 27, p 72–79.

    CAS  Google Scholar 

  19. P.D. Enrique, Y. Mahmoodkhani, E. Marzbanrad, E. Toyserkani and N.Y. Zhou, In Situ Formation of Metal Matrix Composites Using Binder Jet Additive Manufacturing (3d Printing), Mater. Lett., 2018, 232, p 179–182.

    Article  CAS  Google Scholar 

  20. E. Sheydaeian and E. Toyserkani, A New Approach for Fabrication of Titanium-Titanium Boride Periodic Composite Via Additive Manufacturing and Pressure-Less Sintering, Compos. Part B-Eng., 2018, 138, p 140–148.

    Article  CAS  Google Scholar 

  21. M.P. Caputo, A.E. Berkowitz, A. Armstrong, P. Mullner and C.V. Solomon, 4d Printing of Net Shape Parts Made from Ni-Mn-Ga Magnetic Shape-Memory Alloys, Addit. Manuf., 2018, 21, p 579–588.

    CAS  Google Scholar 

  22. Y. Bai and C.B. Williams, An Exploration of Binder Jetting of Copper, Rapid Prototyp. J., 2015, 21, p 177–185.

    Article  Google Scholar 

  23. H. Chen and Y.F. Zhao, Process Parameters Optimization for Improving Surface Quality and Manufacturing Accuracy of Binder Jetting Additive Manufacturing Process, Rapid Prototyp. J., 2016, 22, p 527–538.

    Article  Google Scholar 

  24. H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin and E. Toyserkani, A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties, Mater. Des., 2018, 144, p 98–128.

    Article  CAS  Google Scholar 

  25. H. Miyanaji, N. Momenzadeh and L. Yang, Effect of Printing Speed on Quality of Printed Parts in Binder Jetting Process, Addit. Manuf., 2018, 20, p 1–10.

    Google Scholar 

  26. M. Doyle, K. Agarwal, W. Sealy and K. Schull, Effect of Layer Thickness and Orientation on Mechanical Behavior of Binder Jet Stainless Steel 420+ Bronze Parts, Proc. Manuf., 2015, 1, p 251–262.

    Google Scholar 

  27. M. Ziaee and N.B. Crane, Binder Jetting: A Review of Process, Materials, and Methods, Addit. Manuf., 2019, 28, p 781–801.

    CAS  Google Scholar 

  28. P. Kumar, R. Jayaraj, J. Suryawanshi, U.R. Satwik, J. McKinnell and U. Ramamurty, Fatigue Strength of Additively Manufactured 316l Austenitic Stainless Steel, Acta Mater., 2020, 199, p 225–239.

    Article  CAS  Google Scholar 

  29. N. Lecis, M. Mariani, R. Beltrami, L. Emanuelli, R. Casati, M. Vedani and A. Molinari, Effects of Process Parameters, Debinding and Sintering on the Microstructure of 316l Stainless Steel Produced by Binder Jetting, Mat Sci Eng a-Struct, 2021, 828, 142108.

    Article  CAS  Google Scholar 

  30. S. Mirzababaei, B.K. Paul and S. Pasebani, Microstructure-Property Relationship in Binder Jet Produced and Vacuum Sintered 316 l, Addit. Manuf., 2022, 53, 102720.

    CAS  Google Scholar 

  31. Y.W. Mao, J.W. Li, W. Li, D.S. Cai and Q.S. Wei, Binder Jetting Additive Manufacturing of 316l Stainless-Steel Green Parts with High Strength and Low Binder Content: Binder Preparation and Process Optimization, J. Mater. Process. Technol., 2021, 291, 117020.

    Article  CAS  Google Scholar 

  32. A.B. Spierings, M. Schneider and R. Eggenberger, Comparison of Density Measurement Techniques for Additive Manufactured Metallic Parts, Rapid Prototyp. J., 2011, 17, p 380–386.

    Article  Google Scholar 

  33. D. Huber, L. Vogel and A. Fischer, The Effects of Sintering Temperature and Hold Time on Densification, Mechanical Properties and Microstructural Characteristics of Binder Jet 3d Printed 17–4 Ph Stainless Steel, Addit. Manuf., 2021, 46, 102114.

    CAS  Google Scholar 

  34. Y. Zhang and J. Zhang, Finite Element Simulation and Experimental Validation of Distortion and Cracking Failure Phenomena in Direct Metal Laser Sintering Fabricated Component, Addit. Manuf., 2017, 16, p 49–57.

    Google Scholar 

  35. J. Song, J.C. Gelin, T. Barriere and B. Liu, Experiments and Numerical Modelling of Solid State Sintering for 316l Stainless Steel Components, J. Mater. Process. Technol., 2006, 177, p 352–355.

    Article  CAS  Google Scholar 

  36. C. Manière, L. Durand, A. Weibel and C. Estournès, Spark-Plasma-Sintering and Finite Element Method: From the Identification of the Sintering Parameters of a Submicronic Α-Alumina Powder to the Development of Complex Shapes, Acta Mater., 2016, 102, p 169–175.

    Article  Google Scholar 

  37. Z. Liu, Z.P. Chen and T. Chen, Effects of Crucible Size and Electromagnetic Frequency on Flow during Fabrication of Semisolid A356 Al Alloy Slurry, Acta Metall. Sin., 2018, 54, p 435–442.

    CAS  Google Scholar 

  38. W. Fang, X.B. He, R.J. Zhang, S.D. Yang and X.H. Qu, Evolution of Stresses in Metal Injection Molding Parts During Sintering, Trans. Nonferrous Met. Soc. China, 2015, 25, p 552–558.

    Article  CAS  Google Scholar 

  39. M. Sahli, B. Mamen, H. Ou, J.C. Gelin, T. Barriere and M. Assoul, Experimental Analysis and Numerical Simulation of Sintered Micro-Fluidic Devices Using Powder Hot Embossing Process, Int. J. Adv. Manuf. Technol., 2018, 99, p 1141–1154.

    Article  Google Scholar 

  40. T. Barriere, M. Sahli and A. Agne, Experimental Investigation and Numerical Simulation Analysis of Sintered Micro-Fluidic Devices, Powder Metall., 2019, 63, p 1–8.

    Article  Google Scholar 

  41. Z.P. Chen, F.L. Li, W.P. Chen, D.Z. Zhu and Z.Q. Fu, Numerical Simulation of Particle Size Influence on the Sintering Behavior of 316l Stainless Steel Powders Fabricated by Binder Jet 3d Printing, J. Mater. Eng. Perform., 2021, 30, p 3705–3717.

    Article  CAS  Google Scholar 

  42. J.Y. Park, K.B. Park, J.W. Kang, H.G. Kim, N.M. Hwang and H.K. Park, Spheroidization Behavior of Water-Atomized 316 Stainless Steel Powder by Inductively-Coupled Thermal Plasma, Mater. Today Commun., 2020, 25, 101488.

    Article  CAS  Google Scholar 

  43. A. Mostafaei, E.L. Stevens, E.T. Hughes, S.D. Biery, C. Huila and M. Chmielus, Powder Bed Binder Jet Printed Alloy 625: Densification, Microstructure and Mechanical Properties, Mater. Des., 2016, 108, p 126–135.

    Article  CAS  Google Scholar 

  44. E. Mendoza Jimenez, D. Ding, L. Su, A.R. Joshi, A. Singh, B. Reeja-Jayan and J. Beuth, Parametric Analysis to Quantify Process Input Influence on the Printed Densities of Binder Jetted Alumina Ceramics, Addit. Manuf., 2019, 30, p 100864.

    CAS  Google Scholar 

  45. C. Schmutzler, T.H. Stiehl and M.F. Zaeh, Empirical Process Model for Shrinkage-Induced Warpage in 3d Printing, Rapid Prototyp. J., 2019, 25, p 721–727.

    Article  Google Scholar 

  46. K. Lu and W.T. Reynolds, 3dp Process for Fine Mesh Structure Printing, Powder Technol., 2008, 187, p 11–18.

    Article  CAS  Google Scholar 

  47. M. Turker, D. Godlinski and F. Petzoldt, Effect of Production Parameters on the Properties of in 718 Superalloy by Three-Dimensional Printing, Mater. Charact., 2008, 59, p 1728–1735.

    Article  CAS  Google Scholar 

  48. P. Nandwana, R. Kannan and D. Siddel, Microstructure Evolution During Binder Jet Additive Manufacturing of H13 Tool Steel, Addit. Manuf., 2020, 36, 101534.

    CAS  Google Scholar 

  49. Y. Bai and C.B. Williams, Binder Jetting Additive Manufacturing with a Particle-Free Metal Ink as a Binder Precursor, Mater. Des., 2018, 147, p 146–156.

    Article  CAS  Google Scholar 

  50. M. Ziaee, E.M. Tridas and N.B. Crane, Binder-Jet Printing of Fine Stainless Steel Powder with Varied Final Density, JOM, 2017, 69, p 592–596.

    Article  CAS  Google Scholar 

  51. J.P. Oliveira, J. Shen, Z. Zeng, J.M. Park, Y.T. Choi, N. Schell, E. Maawad, N. Zhou and H.S. Kim, Dissimilar Laser Welding of a CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Scr. Mater., 2022, 206, 114219.

    Article  CAS  Google Scholar 

  52. J.P. Oliveira, A. Shamsolhodaei, J. Shen, J.G. Lopes, R.M. Gonçalves, M. de Brito Ferraz, L. Piçarra, Z. Zeng, N. Schell, N. Zhou and H. Seop Kim, Improving the Ductility in Laser Welded Joints of CoCrFeMnNi High Entropy Alloy to 316 Stainless Steel, Mater. Des., 2022, 219, p 110717.

    Article  CAS  Google Scholar 

  53. W. Tillmann, N.F.L. Dias, D. Stangier, C. Schaak and S. Hoges, Coatability of Diamond-Like Carbon on 316l Stainless Steel Printed by Binder Jetting, Addit. Manuf., 2021, 44, 102064.

    CAS  Google Scholar 

  54. S. Mirzababaei, B.K. Paul and S. Pasebani, Metal Powder Recyclability in Binder Jet Additive Manufacturing, JOM, 2020, 72, p 3070–3079.

    Article  CAS  Google Scholar 

  55. ExOne. 316l Stainless Steel. Available online: https://www.exone.com/Admin/getmedia/92ff696e-1b4e-4c7e-a45c-ae45b04340da/PSC_X1_MaterialData_316L_10192020_V6.pdf (accessed on 28 May 2021).

  56. X.H. Chen, B. Chen, X. Cheng, G.C. Li and Z. Huang, Microstructure and Properties of Hybrid Additive Manufacturing 316l Component by Directed Energy Deposition and Laser Remelting, J. Iron. Steel Res. Int., 2020, 27, p 842–848.

    Article  CAS  Google Scholar 

  57. X.H. Chen, J. Li, X. Cheng, H.M. Wang and Z. Huang, Effect of Heat Treatment on Microstructure, Mechanical and Corrosion Properties of Austenitic Stainless Steel 316l Using Arc Additive Manufacturing, Mat. Sci. Eng. A-Struct., 2018, 715, p 307–314.

    Article  CAS  Google Scholar 

  58. S. Tekumalla, B. Selvarajou, S. Raman, S.B. Gao and M. Seita, The Role of the Solidification Structure on Orientation-Dependent Hardness in Stainless Steel 316l Produced by Laser Powder Bed Fusion, Mat. Sci. Eng. A-Struct., 2022, 833, 142493.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B090905002) and the Basic Research Foundation of Guangzhou City (Grant No. 201804020071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Chen, Z., Chen, L. et al. Optimization of Printing Parameters to Achieve High-Density 316L Stainless Steel Manufactured by Binder Jet 3D Printing. J. of Materi Eng and Perform 32, 3602–3616 (2023). https://doi.org/10.1007/s11665-022-07368-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07368-1

Keywords

Navigation