Skip to main content

Advertisement

Log in

Effects of Heating Temperature and Holding Time on Microstructure and Mechanical Properties of Thixoforged A356 Aluminum Alloy Parts

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to obtain the optimal parameters for thixoforging of A356 aluminum alloy parts, the effects of heating temperature and holding time on the microstructure and mechanical properties of the formed parts with or without T6 heat treatment obtained via thixoforging hot-deformation A356 aluminum alloy directly heated to semi-solid temperature were investigated. Microstructure results showed that lower temperature and shorter holding time refined the grains. The tensile tests results showed that optimal parameters for thixoforging of A356 were heating temperature of 590 °C and holding time of 1 min. TEM results showed that needle-like β" aging precipitated particles with a size of 5 × 5 × 50 nm and equiaxed silicon particles of 50 nm were uniformly distributed in the matrix after T6 heat treatment, which were the strengthening phases of A356 alloy. The needle-like β’’ phases were parallel to the < 001 > crystal orientation of the matrix. The strengthening phase precipitated by aging increased the yield strength and tensile strength and decreased the elongation. The thixoforging parts under optimal parameters exhibited a yield strength of 291.3 MPa, the tensile strength of 324.9 MPa and the elongation of 10.2% after standard T6 heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Kawajiri, M. Kobayashi, and K. Sakamoto, Lightweight Materials Equal Lightweight Greenhouse Gas Emissions?: A Historical Analysis of Greenhouse Gases of Vehicle Material Substitution, J. Clean. Prod., 2020, 253, p 119805. https://doi.org/10.1016/j.jclepro.2019.119805

    Article  Google Scholar 

  2. K. Zheng, D.J. Politis, L. Wang, and J. Lin, A Review on Forming Techniques for Manufacturing Lightweight Complex—Shaped Aluminium Panel Components, Int. J. Lightweight Mater. Manuf., 2018, 1, p 55-80. https://doi.org/10.1016/j.ijlmm.2018.03.006

    Article  Google Scholar 

  3. L. Ren, L. Fan, M. Zhou, Y. Guo, Y. Zhang, C.J. Boehlert, and G. Quan, Magnesium Application in Railway Rolling Stocks: A New Challenge and Opportunity for Lightweighting, Int. J. Lightweight Mater. Manuf., 2018, 1, p 81-88. https://doi.org/10.1016/j.ijlmm.2018.05.002

    Article  Google Scholar 

  4. J. Hirsch, Recent Development in Aluminium for Automotive Applications, Trans. Nonferrous Met. Soc. China., 2014, 24, p 1995-2002. https://doi.org/10.1016/S1003-6326(14)63305-7

    Article  CAS  Google Scholar 

  5. G. Liu, J. Gao, C. Che, Z. Lu, W. Yi, and L. Zhang, Optimization of Casting Means and Heat Treatment Routines for Improving Mechanical and Corrosion Resistance Properties of A356-0.54Sc Casting Alloy, Mater. Today Commun., 2020, 24, p 101227. https://doi.org/10.1016/j.mtcomm.2020.101227

    Article  CAS  Google Scholar 

  6. M. Gurtaran and M. Uludağ, Effect of Ti Addition Holding Time on Casting Quality and Mechanical Properties of A356 Alloy, SN Appl. Sci., 2020, 2, p 1833. https://doi.org/10.1007/s42452-020-03659-1

    Article  CAS  Google Scholar 

  7. M.S. Salleh, M.Z. Omar, J. Syarif, and M.N. Mohammed, An Overview of Semisolid Processing of Aluminium Alloys, ISRN Mater. Sci., 2013, 2013, p 679820. https://doi.org/10.1155/2013/679820

    Article  CAS  Google Scholar 

  8. M.C. Flemings, Behavior of Metal Alloys in the Semisolid State, Metall. Trans. A., 1991, 22, p 957-981. https://doi.org/10.1007/BF02661090

    Article  Google Scholar 

  9. D.B. Spencer, R. Mehrabian, and M.C. Flemings, Rheological Behavior of Sn-15 pct Pb in the Crystallization Range, Metall. Mater. Trans. B., 1972, 3, p 1925-1932. https://doi.org/10.1007/BF02642580

    Article  CAS  Google Scholar 

  10. H.V. Atkinson, Modelling the Semisolid Processing of Metallic Alloys, Prog. Mater. Sci., 2005, 50, p 341-412. https://doi.org/10.1016/j.pmatsci.2004.04.003

    Article  CAS  Google Scholar 

  11. M. Li, Y. Li, G. Bi, X. Huang, T. Chen, and Y. Ma, Effects of Melt Treatment Temperature and Isothermal Holding Parameter on Water-Quenched Microstructures of A356 Aluminum Alloy Semisolid Slurry, Trans. Nonferrous Met. Soc. China., 2018, 28, p 393-403. https://doi.org/10.1016/S1003-6326(18)64673-4

    Article  CAS  Google Scholar 

  12. J. Jiang, Y. Wang, G. Xiao, and X. Nie, Comparison of Microstructural Evolution of 7075 Aluminum Alloy Fabricated by SIMA and RAP, J. Mater. Process. Technol., 2016, 238, p 361-372. https://doi.org/10.1016/j.jmatprotec.2016.06.020

    Article  CAS  Google Scholar 

  13. R.G. Guan, Z.Y. Zhao, Y.D. Li, T.J. Chen, S.X. Xu, and P.X. Qi, Microstructure and Properties of Squeeze Cast A356 Alloy Processed with a Vibrating Slope, J. Mater. Process. Technol., 2016, 229, p 514-519. https://doi.org/10.1016/j.jmatprotec.2015.09.038

    Article  CAS  Google Scholar 

  14. E. Tzimas and A. Zavaliangos, Mechanical Behavior of Alloys with Equiaxed Microstructure in the Semisolid State at High Solid Content, Acta Mater., 1999, 47, p 517-528. https://doi.org/10.1016/S1359-6454(98)00356-5

    Article  CAS  Google Scholar 

  15. C.P. Chen and C.-Y.A. Tsao, Semi-Solid Deformation of Non-Dendritic Structures—I, Phenomenol. Behav. Acta Mater., 1997, 45, p 1955-1968. https://doi.org/10.1016/S1359-6454(96)00312-6

    Article  CAS  Google Scholar 

  16. C.M. Gourlay and A.K. Dahle, Dilatant Shear Bands in Solidifying Metals, Nature, 2007, 445, p 70-73. https://doi.org/10.1038/nature05426

    Article  CAS  Google Scholar 

  17. K.M. Kareh, C. O’Sullivan, T. Nagira, H. Yasuda, and C.M. Gourlay, Dilatancy in Semi-Solid Steels at High Solid Fraction, Acta Mater., 2017, 125, p 187-195. https://doi.org/10.1016/j.actamat.2016.11.066

    Article  CAS  Google Scholar 

  18. M.H. Sheikh-Ansari and M. Aghaie-Khafri, Shear Localization in Semi-Solid Deformation: A Bifurcation Theory Approach, Mech. Res. Commun., 2018, 89, p 1-5. https://doi.org/10.1016/j.mechrescom.2018.02.002

    Article  Google Scholar 

  19. Q. Chen, G. Chen, X. Ji, F. Han, Z. Zhao, J. Wan, and X. Xiao, Compound Forming of 7075 Aluminum Alloy Based on Functional Integration of Plastic Deformation and Thixoformation, J. Mater. Process. Technol., 2017, 246, p 167-175. https://doi.org/10.1016/j.jmatprotec.2017.03.023

    Article  CAS  Google Scholar 

  20. Z. Ma, H. Zhang, W. Song, X. Wu, L. Jia, and H. Zhang, Pressure-Driven Mold Filling Model of Aluminum Alloy Melt/Semi-Solid Slurry Based on Rheological Behavior, J. Mater. Sci. Technol., 2020, 39, p 14-21. https://doi.org/10.1016/j.jmst.2019.07.048

    Article  CAS  Google Scholar 

  21. M. Qi, Y. Kang, Y. Xu, J. Li, and A. Liu, New Technique for Preparing A356 Alloy Semisolid Slurry and its Rheo-Diecast Microstructure and Properties, Trans. Nonferrous Met. Soc. China., 2021, 31, p 1868-1884. https://doi.org/10.1016/S1003-6326(21)65623-6

    Article  CAS  Google Scholar 

  22. B. Binesh and M. Aghaie-Khafri, RUE-Based Semi-Solid Processing: Microstructure Evolution and Effective Parameters, Mater. Des., 2016, 95, p 268-286. https://doi.org/10.1016/j.matdes.2016.01.117

    Article  CAS  Google Scholar 

  23. M. Kiuchi and R. Kopp, Mushy/Semi-Solid Metal Forming Technology - Present and Future, CIRP Ann., 2002, 51, p 653-670. https://doi.org/10.1016/S0007-8506(07)61705-3

    Article  Google Scholar 

  24. J. Jiang, Y. Liu, G. Xiao, Y. Wang, and X. Xiao, Effects of Plastic Deformation of Solid Phase on Mechanical Properties and Microstructure of Wrought 5A06 Aluminum Alloy in Directly Semisolid Thixoforging, J. Alloys Compd., 2020, 831, p 154748. https://doi.org/10.1016/j.jallcom.2020.154748

    Article  CAS  Google Scholar 

  25. G. Xiao, J. Jiang, Y. Liu, Y. Wang, and B. Guo, Recrystallization and Microstructure Evolution of Hot Extruded 7075 Aluminum Alloy during Semi-Solid Isothermal Treatment, Mater. Charact., 2019, 156, p 109874. https://doi.org/10.1016/j.matchar.2019.109874

    Article  CAS  Google Scholar 

  26. Y. Birol, Solid Fraction Analysis with DSC in Semi-Solid Metal Processing, J. Alloys Compd., 2009, 486, p 173-177. https://doi.org/10.1016/j.jallcom.2009.06.165

    Article  CAS  Google Scholar 

  27. D. Zhang, H. Dong, and H. Atkinson, What is the Process Window for Semi-Solid Processing?, Metall. Mater. Trans. A., 2016, 47, p 1-5. https://doi.org/10.1007/s11661-015-3185-9

    Article  CAS  Google Scholar 

  28. R. Gecu, S. Acar, A. Kisasoz, K. Altug Guler, and A. Karaaslan, Influence of T6 Heat Treatment on A356 and A380 Aluminium Alloys Manufactured by Thixoforging Combined with Low Superheat Casting, Trans. Nonferrous Met. Soc. China., 2018, 28, p 385-392. https://doi.org/10.1016/S1003-6326(18)64672-2

    Article  CAS  Google Scholar 

  29. K.N. Campo, E.S.N. Lopes, C.J. Parrish, and R. Caram, Rapid Quenching of Semisolid Ti-Cu Alloys: Insights into Globular Microstructure Formation and Coarsening, Acta Mater., 2017, 139, p 86-95. https://doi.org/10.1016/j.actamat.2017.08.006

    Article  CAS  Google Scholar 

  30. Y. Wang, S. Zhao, X. Zhao, and Y. Zhao, Microstructural Coarsening of 6061 Aluminum Alloy Semi-Solid Billets Prepared via Recrystallization and Partial Melting, J. Mech. Sci. Technol., 2017, 31, p 3917-3923. https://doi.org/10.1007/s12206-017-0737-5

    Article  Google Scholar 

  31. J. Jiang, H.V. Atkinson, and Y. Wang, Microstructure and Mechanical Properties of 7005 Aluminum Alloy Components Formed by Thixoforming, J. Mater. Sci. Technol., 2017, 33, p 379-388. https://doi.org/10.1016/j.jmst.2016.07.014

    Article  CAS  Google Scholar 

  32. S. Saffari and F. Akhlaghi, Microstructure and Mechanical Properties of Al-Mg2Si Composite Fabricated In-situ by Vibrating Cooling Slope, Trans. Nonferrous Met. Soc. China., 2018, 28, p 604-612. https://doi.org/10.1016/S1003-6326(18)64693-X

    Article  CAS  Google Scholar 

  33. M. Zhu, Z. Jian, G. Yang, and Y. Zhou, Effects of T6 Heat Treatment on the Microstructure, Tensile Properties, and Fracture Behavior of the Modified A356 Alloys, Sustain. Mater. Des. Appl., 2012, 36, p 243-249. https://doi.org/10.1016/j.matdes.2011.11.018

    Article  CAS  Google Scholar 

  34. H. Liao, Y. Wu and, K. Ding, Hardening Response and Precipitation Behavior of Al-7%Si-0.3%Mg Alloy in a Pre-aging Process, Mater. Sci. Eng. A., 2013, 560, p 811-816. https://doi.org/10.1016/j.msea.2012.10.041

    Article  CAS  Google Scholar 

  35. A. Pola, M. Tocci, and P. Kapranos, Microstructure and Properties of Semi-Solid Aluminum Alloys: A Literature Review, Metals., 2018, 8, p 181. https://doi.org/10.3390/met8030181

    Article  CAS  Google Scholar 

  36. L. Fan, M. Zhou, Y. Zhang, Q. Tang, G. Quan, and B. Liu, The Semi-Solid Microstructural Evolution and Coarsening Kinetics of AZ80-02Y-015Ca Magnesium Alloy, Mater. Charact., 2019, 154, p 116-126. https://doi.org/10.1016/j.matchar.2019.05.019

    Article  CAS  Google Scholar 

  37. P. Cavaliere, E. Cerri, and P. Leo, Effect of Heat Treatments on Mechanical Properties and Damage Evolution of Thixoformed Aluminium Alloys, Mater. Charact., 2005, 55, p 35-42. https://doi.org/10.1016/j.matchar.2005.02.006

    Article  CAS  Google Scholar 

  38. K. Lee, Y.N. Kwon, and S. Lee, Effects of Eutectic Silicon Particles on Tensile Properties and Fracture Toughness of A356 Aluminum Alloys Fabricated by Low-Pressure-Casting, Casting-Forging, and Squeeze-Casting Processes, J. Alloys Compd., 2008, 461, p 532-541. https://doi.org/10.1016/j.jallcom.2007.07.038

    Article  CAS  Google Scholar 

  39. H.-M. Guo, X.-J. Yang, and J.-X. Wang, Pressurized Solidification of Semi-Solid Aluminum Die Casting Alloy A356, J. Alloys Compd., 2009, 485, p 812-816. https://doi.org/10.1016/j.jallcom.2009.06.083

    Article  CAS  Google Scholar 

  40. W. Mao, Q. Zheng, and D. Zhu, Rheo-squeeze Casting of Semi-Solid A356 Aluminum Alloy Slurry, Trans. Nonferrous Met. Soc. China., 2010, 20, p 1769-1773. https://doi.org/10.1016/S1003-6326(09)60372-1

    Article  CAS  Google Scholar 

  41. N. Maruyama, R. Uemori, N. Hashimoto, M. Saga, and M. Kikuchi, Effect of Silicon Addition on the Composition and Structure of Fine-Scale Precipitates in Al-Mg-Si Alloys, Scr. Mater., 1997, 36, p 89-93. https://doi.org/10.1016/S1359-6462(96)00358-2

    Article  CAS  Google Scholar 

  42. E. Sjölander and S. Seifeddine, The Heat Treatment of Al-Si-Cu-Mg Casting Alloys, J. Mater. Process. Technol., 2010, 210, p 1249-1259. https://doi.org/10.1016/j.jmatprotec.2010.03.020

    Article  CAS  Google Scholar 

  43. H. Azimi, S. Nourouzi, and R. Jamaati, Effects of Ti Particles and T6 Heat Treatment on the Microstructure and Mechanical Properties of A356 Alloy Fabricated by Compocasting, Mater. Sci. Eng. A., 2021, 818, p 141443. https://doi.org/10.1016/j.msea.2021.141443

    Article  CAS  Google Scholar 

  44. K. Matsuda, T. Naoi, K. Fujii, Y. Uetani, T. Sato, A. Kamio and S. Ikeno, Crystal Structure of the β′′ Phase in an Al-1.0 Mass%Mg2Si-0.4mass%Si Alloy, Mater. Sci. Eng. A., 1999, 262, p 232-237. https://doi.org/10.1016/S0921-5093(98)00962-9

    Article  Google Scholar 

  45. X. Zhang, L.K. Huang, B. Zhang, Y.Z. Chen, S.Y. Duan, G. Liu, C.L. Yang, and F. Liu, Enhanced Strength and Ductility of A356 Alloy due to Composite Effect of Near-Rapid Solidification and Thermo-Mechanical Treatment, Mater. Sci. Eng. A., 2019, 753, p 168-178. https://doi.org/10.1016/j.msea.2019.03.039

    Article  CAS  Google Scholar 

  46. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. TrÆholt, U. Tundal, and O. Reiso, The Crystal Structure of the β″ Phase in Al-Mg-Si Alloys, Acta Mater., 1998, 46, p 3283-3298. https://doi.org/10.1016/S1359-6454(97)00493-X

    Article  CAS  Google Scholar 

  47. S.J. Andersen, Quantification of the Mg2Si β″ and β′ Phases in AlMgSi Alloys by Transmission Electron Microscopy, Metall. Mater. Trans. A., 1995, 26, p 1931-1937. https://doi.org/10.1007/BF02670664

    Article  Google Scholar 

  48. H.C. Long, J.H. Chen, C.H. Liu, D.Z. Li, and Y.Y. Li, The Negative Effect of Solution Treatment on the Age Hardening of A356 Alloy, Mater. Sci. Eng. A., 2013, 566, p 112-118. https://doi.org/10.1016/j.msea.2012.12.093

    Article  CAS  Google Scholar 

  49. Y.D. Wang, L.H. Wu, P. Xue, H. Zhang, D.R. Ni, and Z.Y. Ma, Improved Strength with Good Conductivity in Cu-Cr-Zr Alloys: Determinant Effect of Under-aging Treatment Before Rolling and Aging, Mater. Sci. Eng. A., 2022, 848, p 143395. https://doi.org/10.1016/j.msea.2022.143395

    Article  CAS  Google Scholar 

  50. Y.D. Wang, M. Liu, B.H. Yu, L.H. Wu, P. Xue, D.R. Ni, and Z.Y. Ma, Enhanced Combination of Mechanical Properties and Electrical Conductivity of a Hard State Cu-Cr-Zr Alloy via One-Step Friction Stir Processing, J. Mater. Process. Technol., 2021, 288, p 116880. https://doi.org/10.1016/j.jmatprotec.2020.116880

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) [51875124] and the National Key Research and Development Project [2019YFB2006503].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jufu Jiang or Ying Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jiang, J., Xiao, G. et al. Effects of Heating Temperature and Holding Time on Microstructure and Mechanical Properties of Thixoforged A356 Aluminum Alloy Parts. J. of Materi Eng and Perform 32, 2062–2073 (2023). https://doi.org/10.1007/s11665-022-07281-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07281-7

Keywords

Navigation