Skip to main content
Log in

Optimization of Duty Cycle and Frequency Parameters of ZK60 Magnesium Alloy under Two-Step Voltage-Increasing Mode

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Micro-arc oxidation (MAO) process was conducted on ZK60 Mg alloy under an optimized two-step voltage-increasing mode to investigate the effects of duty cycle and frequency on the evolution and characteristics of the coatings. Scanning electron microscopy, electrochemical impedance spectroscopy, and other methods are used to characterize the microstructure and corrosion behavior of the coating. Voltage–time curves under different duty cycles and frequencies show that duty cycle and frequency have a great influence on the microstructure and performances of the coatings under two-step voltage-increasing mode. A higher current peak combined with a wider basic peak width can provide enough driving force and longer duration, which contributes to producing a thick and compact coating with good corrosion resistance. When the duty cycle was 30%, it is favorable for developing a compact and smooth MAO coating which exhibits good corrosion resistance. Too high duty cycle would make the coating poor in corrosion resistance due to the loose coating resulting from the excessive energy. When the frequency is 600 Hz, the coating growth is greater in both stages, which leads to a dense and uniform coating and results in a high thickness of 22.4 μm. The MAO coating with the best corrosion resistance can be conducted when the duty cycle is 30% and the frequency is 600 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. V.V. Ramalingam, P. Ramasamy, M.D. Kovukkal, and G. Myilsamy, Research and Development in Magnesium Alloys for Industrial and Biomedical Applications: A Review, Met. Mater. Int., 2019, 26(4), p 409–430.

    Article  Google Scholar 

  2. H. Pan, G. Qin, Y. Huang, Y. Ren, X. Sha, X. Han et al., Development of Low-Alloyed and Rare-Earth-Free Magnesium Alloys Having Ultra-High Strength, Acta Mater., 2018, 149, p 350–363.

    Article  CAS  Google Scholar 

  3. T. Zhu, Y. Yi, J. Yang, Y. Shen, L. He, and Y. Xiong, Dynamic Corrosion Behavior of AZ80 Magnesium Alloy with Different Orientations in Simulated Body Fluid, Mater. Chem. Phys., 2021, 259, p 124039. https://doi.org/10.1016/j.matchemphys.2020.124039

    Article  CAS  Google Scholar 

  4. L.-Y. Chen, H.-Y. Zhang, C. Zheng, H.-Y. Yang, P. Qin, C. Zhao et al., Corrosion Behavior and Characteristics of Passive Films of Laser Powder Bed Fusion Produced Ti–6Al–4V in Dynamic Hank’s Solution, Mater. Des., 2021, 208, p 109907.

    Article  CAS  Google Scholar 

  5. K. Yang and L. Tan, Control of Biodegradation of Magnesium (Mg) Alloys for Medical Applications, Corrosion Prevention of Magnesium Alloys. Elsevier, 2013, p 509–543. https://doi.org/10.1533/9780857098962.4.509

    Chapter  Google Scholar 

  6. M. Yazici, A.E. Gulec, M. Gurbuz, Y. Gencer, and M. Tarakci, Biodegradability and Antibacterial Properties of MAO Coatings Formed on Mg-Sr-Ca Alloys in an Electrolyte Containing Ag Doped Hydroxyapatite, Thin Solid Films, 2017, 644, p 92–98.

    Article  CAS  Google Scholar 

  7. P. Sang, L.-Y. Chen, C. Zhao, Z.-X. Wang, H. Wang, S. Lu et al., Particle Size-Dependent Microstructure, Hardness and Electrochemical Corrosion Behavior of Atmospheric Plasma sprayed NiCrBSi Coatings, Metals., 2019, 9(12), p 1342.

    Article  CAS  Google Scholar 

  8. L. Wang, L. Xie, Y. Lv, L.-C. Zhang, L. Chen, Q. Meng et al., Microstructure Evolution and Superelastic Behavior in Ti-35Nb-2Ta-3Zr Alloy Processed by Friction stir Processing, Acta Mater., 2017, 131, p 499–510.

    Article  CAS  Google Scholar 

  9. L.-C. Zhang, L.-Y. Chen, and L. Wang, Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests, Adv. Eng. Mater., 2020, 22(5), p 1901258.

    Article  CAS  Google Scholar 

  10. P. Bocchetta, L.Y. Chen, J.D.C. Tardelli, A. Cândido, F. dos Reis, and P.L. Almeraya-Calderón, Passive Layers and Corrosion Resistance of Biomedical Ti-6Al-4V and β-Ti Alloys, Coatings, 2021, 11(5), p 487. https://doi.org/10.3390/coatings11050487

    Article  CAS  Google Scholar 

  11. P. Qin, L. Chen, C. Zhao, Y. Liu, C. Cao, H. Sun et al., Corrosion Behavior and Mechanism of Selective Laser Melted Ti35Nb Alloy Produced using Pre-Alloyed and Mixed Powder in Hank’s Solution, Corros. Sci., 2021, 189, p 109609.

    Article  CAS  Google Scholar 

  12. X. Chen, N. Birbilis, and T. Abbott, Review of Corrosion-Resistant Conversion Coatings for Magnesium and its Alloys, Corrosion, 2011, 67(3), p 035005-1–035005-16.

    Article  Google Scholar 

  13. L. Zhang, Z. Shen, and J. Xu, Mechanically Milling-Induced Amorphization in Sn-Containing Ti-Based Multicomponent Alloy Systems, Mater. Sci. Eng., A, 2005, 394(1–2), p 204–209.

    Article  Google Scholar 

  14. J. Lei, C. Shi, S. Zhou, Z. Gu, and L.-C. Zhang, Enhanced Corrosion and Wear Resistance Properties of Carbon Fiber Reinforced Ni-Based COMPOSITE Coating by Laser Cladding, Surf. Coat. Technol., 2018, 334, p 274–285.

    Article  CAS  Google Scholar 

  15. L.-Y. Chen, T. Xu, S. Lu, Z.-X. Wang, S. Chen, and L.-C. Zhang, Improved Hardness and Wear Resistance of Plasma Sprayed Nanostructured NiCrBSi Coating via Short-Time Heat Treatment, Surf. Coat. Technol., 2018, 350, p 436–444.

    Article  CAS  Google Scholar 

  16. K. Rokosz, T. Hryniewicz, S. Gaiaschi, P. Chapon, S. Raaen, K. Pietrzak et al., Characterization of Porous Phosphate Coatings Enriched with Magnesium or zinc on cp Titanium Grade 2 under DC Plasma Electrolytic Oxidation, Metals., 2018, 8(2), p 112.

    Article  Google Scholar 

  17. L. Shao, H. Li, B. Jiang, C. Liu, X. Gu, and D. Chen, A Comparative Study of Corrosion Behavior of Hard Anodized and Micro-arc Oxidation Coatings on 7050 Aluminum Alloy, Metals., 2018, 8(3), p 165.

    Article  Google Scholar 

  18. C. Xu, L.-Y. Chen, C.-B. Zheng, H.-Y. Zhang, C.-H. Zhao, Z.-X. Wang et al., Improved Wear and Corrosion Resistance of Microarc Oxidation Coatings on Ti–6Al–4V Alloy with Ultrasonic Assistance for Potential Biomedical Applications, Adv. Eng. Mater., 2021, 23(4), p 2001433.

    Article  CAS  Google Scholar 

  19. L.-Y. Chen, S.-X. Liang, Y. Liu, and L.-C. Zhang, Additive Manufacturing of Metallic Lattice Structures: unconstrained design, Accurate Fabrication, Fascinated Performances, and Challenges, Mater. Sci. Eng. R. Rep., 2021, 146, p 100648.

    Article  Google Scholar 

  20. L.C. Zhang, and L.Y. Chen, A review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21(4), p 1801215.

    Article  Google Scholar 

  21. J. Kuang, Z. Ba, Z. Li, Z. Wang, and J. Qiu, The Study on Corrosion Resistance of Superhydrophobic Coatings on MagnesIum, Appl. Surf. Sci., 2020, 501, p 144137.

    Article  CAS  Google Scholar 

  22. J. Sun, S. Cai, J. Wei, R. Ling, J. Liu, and G. Xu, Long-Term Corrosion Resistance and Fast Mineralization Behavior of Micro-Nano Hydroxyapatite Coated Magnesium Alloy in Vitro, Ceram. Int., 2020, 46(1), p 824–832.

    Article  CAS  Google Scholar 

  23. A. Da Forno and M. Bestetti, Effect of the Electrolytic Solution COMPOSITION on the Performance of Micro-Arc Anodic Oxidation Films Formed on AM60B Magnesium Alloy, Surf. Coat. Technol., 2010, 205(6), p 1783–1788.

    Article  Google Scholar 

  24. S.-Y. Wang and Y.-P. Xia, Microarc Oxidation Coating Fabricated on AZ91D Mg Alloy in an Optimized Dual Electrolyte, Trans. Nonferro. Metals Soc. China, 2013, 23(2), p 412–419.

    Article  CAS  Google Scholar 

  25. Y. Chen, J. Dou, Z. Pang, H. Yu, C. Chen, and J. Feng, Improving the Corrosion Resistance of Micro-Arc Oxidation Coated Mg–Zn–Ca Alloy, RSC Adv., 2020, 10(14), p 8244–8254.

    Article  CAS  Google Scholar 

  26. T. Hui, M. Wang, B. Zhu, and L. He, Growth Process and Dielectric Breakdown of Micro Arc Oxidation Coating on AZ31 Mg Alloy Pretreated by Alkali Treatment, Prot. Met. Phys. Chem. Surf., 2020, 56(1), p 156–163.

    Article  Google Scholar 

  27. Y. Yue and W. Hua, Effect of Current Density on Corrosion Resistance of Micro-Arc Oxide Coatings on Magnesium Alloy, Trans. Nonferro. Metals Soc. China, 2010, 20, p s688–s692.

    Article  Google Scholar 

  28. J. Chen, Z. Wang, and S. Lu, Effects of Electric Parameters on MICROSTRUCTURE and Properties of MAO Coating Fabricated on ZK60 Mg Alloy in Dual Electrolyte, Rare Met., 2012, 31(2), p 172–177.

    Article  Google Scholar 

  29. A. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2–3), p 73–93.

    Article  CAS  Google Scholar 

  30. L. Sheng, Z.-X. Wang, C. Jing, and X.-S. Zhou, Optimization of Dual Electrolyte and Characteristic of Micro-Arc Oxidation Coating Fabricated on ZK60 Mg Alloy, Trans. Nonferro. Metals Soc. China, 2011, 21(4), p 929–935.

    Article  Google Scholar 

  31. Z.-X. Wang, J.-W. Zhang, F. Ye, W.-G. Lv, S. Lu, L. Sun et al., Properties of Micro-Arc Oxidation Coating Fabricated on Magnesium Under Two Steps Current-Decreasing Mode, Front. Mater., 2020, 7, p 261.

    Article  Google Scholar 

  32. P.B. Srinivasan, J. Liang, C. Blawert, M. Störmer, and W. Dietzel, Effect of Current Density on the Microstructure and cOrrosion Behaviour of Plasma Electrolytic Oxidation Treated AM50 Magnesium Alloy, Appl. Surf. Sci., 2009, 255(7), p 4212–4218.

    Article  Google Scholar 

  33. H. Yulong, Z. Wang, J. Ai, B. Shichao, and H. Liu, Preparation of Coating on the Titanium Surface by Micro-Arc Oxidation to Improve Corrosion Resistance, Coatings, 2021, 11(2), p 230. https://doi.org/10.3390/coatings11020230

    Article  CAS  Google Scholar 

  34. C. Rabadia, Y. Liu, G. Cao, Y. Li, C. Zhang, T. Sercombe et al., High-Strength β Stabilized Ti-Nb-Fe-Cr Alloys with Large Plasticity, Mater. Sci. Eng., A, 2018, 732, p 368–377.

    Article  CAS  Google Scholar 

  35. W.-L. Lü, T.-J. Chen, M. Ying, W.-J. Xu, Y. Jian, and H. Yuan, Effects of Increase Extent of Voltage on Wear and Corrosion Resistance of Micro-Arc Oxidation Coatings on AZ91D Alloy, Trans. Nonferro. Metals Soc. China, 2008, 18, p s354–s360.

    Article  Google Scholar 

  36. J. Lu, G. Cao, G. Quan, C. Wang, J. Zhuang, and R. Song, Effects of Voltage on Microstructure and Corrosion Resistance of Micro-Arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy, J. Mater. Eng. Perform., 2018, 27(1), p 147–154.

    Article  CAS  Google Scholar 

  37. Z. Jia, X. Duan, W. Zhang, W. Wang, H. Sun, S. Wang et al., Ultra-Sustainable Fe78Si9B13 Metallic Glass as a Catalyst for Activation of Persulfate on Methylene Blue Degradation under UV-Vis Light, Sci. Rep., 2016, 6(1), p 1–10.

    Article  Google Scholar 

  38. Y. Wang, J. Wang, J. Zhang, and Z. Zhang, Characteristics of Anodic Coatings Oxidized to Different Voltage on AZ91D Mg Alloy by Micro-Arc Oxidization Technique, Mater. Corros., 2005, 56(2), p 88–92.

    Article  CAS  Google Scholar 

  39. R. Zhang, Film Formation in the Second Step of Micro-Arc Oxidation on Magnesium Alloys, Corros. Sci., 2010, 52(4), p 1285–1290.

    Article  CAS  Google Scholar 

  40. Z.X. Wang, X. Lei, J.W. Zhang, F. Ye, W.G. Lv, X. Cheng, L. Sheng, and J. Yang, Preparation and Degradation Behavior of Composite Bio-Coating on ZK60 Magnesium Alloy Using Combined Micro-Arc Oxidation and Electrophoresis Deposition, Fron. Mater., 2020 https://doi.org/10.3389/fmats.2020.00190

    Article  Google Scholar 

  41. L. Sheng, L. Tang, X.Z. Jiang, Z.X. Wang, and J. Chen, Growth Characteristics, Microstructure and Corrosion Resistance of Micro-Arc Oxidation Coatings Fabricated on ZK60 Mg Alloy Under Two Steps Voltage-Increasing Mode, Adv. Mater. Res., 2011, 337, p 101–105. https://doi.org/10.4028/www.scientific.net/AMR.337.101

    Article  CAS  Google Scholar 

  42. Y. Tang, X. Zhao, K. Jiang, J. Chen, and Y. Zuo, The Influences of Duty Cycle on the Bonding Strength of AZ31B Magnesium Alloy by Microarc Oxidation Treatment, Surf. Coat. Technol., 2010, 205(6), p 1789–1792.

    Article  CAS  Google Scholar 

  43. I. Hwang, D. Hwang, Y. Ko, and D. Shin, Correlation Between Current Frequency and Electrochemical Properties of Mg Alloy Coated by Micro Arc Oxidation, Surf. Coat. Technol., 2012, 206(15), p 3360–3365.

    Article  CAS  Google Scholar 

  44. S. Zhang, Y. Bi, J. Li, Z. Wang, J. Yan, J. Song et al., Biodegradation Behavior of Magnesium and ZK60 Alloy in Artificial Urine and Rat Models, Bioact Mater., 2017, 2(2), p 53–62.

    Article  Google Scholar 

  45. W. Jin, G. Wang, Z. Lin, H. Feng, W. Li, X. Peng et al., Corrosion Resistance and Cytocompatibility of Tantalum-Surface-Functionalized Biomedical ZK60 Mg Alloy, Corros Sci., 2017, 114, p 45–56.

    Article  CAS  Google Scholar 

  46. Y.-W. Cui, L.-Y. Chen, P. Qin, R. Li, Q. Zang, J. Peng et al., Metastable Pitting Corrosion Behavior of Laser Powder Bed Fusion Produced Ti-6Al-4V in Hank’s Solution, Corros. Sci., 2022, 203, p 110333.

    Article  CAS  Google Scholar 

  47. P. Su, X. Wu, Y. Guo, and Z. Jiang, Effects of Cathode Current Density on Structure and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings Formed on ZK60 Mg Alloy, J Alloys Compd., 2009, 475(1–2), p 773–777.

    Article  CAS  Google Scholar 

  48. P. Golubkov, E. Pecherskaya, O. Karpanin, M. Safronov, J. Shepeleva, A. Bibarsova, editors. Intelligent automated system of controlled synthesis of MAO-coatings. 2019 24th Conference of Open Innovations Association (FRUCT); 2019: IEEE.

  49. S. Durdu, A. Aytac, and M. Usta, Characterization and Corrosion Behavior of Ceramic Coating on Magnesium by Micro-Arc Oxidation, J. Alloy. Compd., 2011, 509(34), p 8601–8606.

    Article  CAS  Google Scholar 

  50. W. Krysmann, P. Kurze, K.H. Dittrich, and H. Schneider, Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF), Cryst. Res. Technol., 1984, 19(7), p 973–979.

    Article  CAS  Google Scholar 

  51. S. Durdu, S.L. Aktuğ, and K. Korkmaz, Characterization and Mechanical Properties of the Duplex Coatings Produced on Steel by Electro-Spark Deposition and Micro-Arc Oxidation, Surf. Coat. Technol., 2013, 236, p 303–308.

    Article  CAS  Google Scholar 

  52. H. Duan, K. Du, C. Yan, and F. Wang, Electrochemical Corrosion Behavior of Composite Coatings of Sealed MAO Film on Magnesium Alloy AZ91D, Electrochim. Acta, 2006, 51(14), p 2898–2908.

    Article  CAS  Google Scholar 

  53. M. Laleh, F. Kargar, and A.S. Rouhaghdam, Formation of a Compact Oxide Layer on AZ91D Magnesium Alloy by Microarc Oxidation via Addition of Cerium Chloride into the MAO Electrolyte, J. Coat. Technol. Res., 2011, 8(6), p 765.

    Article  CAS  Google Scholar 

  54. D. Luo, Y. Liu, X. Yin, H. Wang, Z. Han, and L. Ren, Corrosion Inhibition of Hydrophobic Coatings Fabricated by Micro-Arc Oxidation on an Extruded Mg–5Sn–1Zn Alloy Substrate, J Alloy. Compd., 2018, 731, p 731–738.

    Article  CAS  Google Scholar 

  55. J. Wang, Y. Zhang, S. Wang, Y. Song, and L. Jiang, Bioinspired Colloidal Photonic Crystals with Controllable Wettability, Acc. Chem. Res., 2011, 44(6), p 405–415.

    Article  CAS  Google Scholar 

  56. M. Curioni, L. Salamone, F. Scenini, M. Santamaria, and M. Di Natale, A mathematical Description Accounting for the Superfluous Hydrogen Evolution and the Inductive Behaviour Observed during Electrochemical Measurements on Magnesium, Electrochim. Acta, 2018, 274, p 343–352.

    Article  CAS  Google Scholar 

  57. S. Durdu, S. Bayramoğlu, A. Demirtaş, M. Usta, and A.H. Üçışık, Characterization of AZ31 Mg Alloy Coated by Plasma Electrolytic Oxidation, Vacuum, 2013, 88, p 130–133.

    Article  CAS  Google Scholar 

  58. E. Akbari, F. Di Franco, P. Ceraolo, K. Raeissi, M. Santamaria, and A. Hakimizad, Electrochemically-Induced TiO2 Incorporation for Enhancing Corrosion and Tribocorrosion Resistance of PEO Coating on 7075 Al alloy, Corros. Sci., 2018, 143, p 314–328.

    Article  CAS  Google Scholar 

  59. L. Tan, M. Gong, F. Zheng, B. Zhang, and K. Yang, Study on Compression Behavior of Porous Magnesium used as Bone Tissue Engineering Scaffolds, Biomed Mater., 2009, 4(1), p 015016.

    Article  Google Scholar 

  60. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie et al., Research on an Mg–Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6(2), p 626–640.

    Article  CAS  Google Scholar 

  61. L. Zhang, L.-Y. Chen, C. Zhao, Y. Liu, and L.-C. Zhang, Calculation of Oxygen Diffusion Coefficients in Oxide Films Formed on low-Temperature Annealed Zr Alloys and their Related Corrosion Behavior, Metals., 2019, 9(8), p 850.

    Article  Google Scholar 

  62. J.-H. Wang, J. Wang, Y. Lu, M.-H. Du, and F.-Z. Han, Effects of Single Pulse Energy on the Properties of Ceramic Coating Prepared by Micro-Arc Oxidation on Ti Alloy, Appl. Surf. Sci., 2015, 324, p 405–413.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by a project funded by the priority academic program development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZX., Zhang, ZY., Lv, WG. et al. Optimization of Duty Cycle and Frequency Parameters of ZK60 Magnesium Alloy under Two-Step Voltage-Increasing Mode. J. of Materi Eng and Perform 32, 2084–2096 (2023). https://doi.org/10.1007/s11665-022-07280-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07280-8

Keywords

Navigation