Skip to main content

Advertisement

Log in

Effect of Microstructural Evolution on Creep and Rupture Behavior of Inconel 617 Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Inconel 617 alloy has been creep-tested at different combinations of loads (80-350 MPa) and temperatures (650-800 °C), considering its use in the advanced ultra-super critical (AUSC) boiler. The values of Monkman–Grant and modified Monkman–Grant constants obtained by analyzing the creep data are considered as related to the observed microstructural instability during creep at  ~  650-800 °C. The presence of intragranular secondary γ′ precipitates has led to significantly higher strength inside the grains compared to that of their boundaries, found to have a scanty population of secondary (Cr,Mo)23C6 precipitates. As a result, formation of creep cavities leading to intergranular fracture has been observed in the temperature range of 650-750 °C. The creep damage tolerance factor, λ, found as ~ 2.5 by empirical damage analysis on the basis of test results is in tune with the predominance of creep cavitation in the temperature range of 650-750 °C. In contrast, both the obtained value of λ ~ 10.51 and the mixed mode nature of the fracture surface observed for the sample creep tested at 800 °C are considered due to substantial localized plastic deformation or necking. Increased creep ductility with necking is ascribed primarily to the reduced the grain body strength caused by the absence of γ′ precipitates and the grain boundary sliding being restricted by the discrete secondary (Cr,Mo)23C6 precipitates present in abundance along the grain boundary. Based on the plot of applied stress against Larson–Miller parameter, it is possible to predict that the Inconel 617 alloy would withstand the steam pressure of 30 MPa at 750 °C for a design life of 105 h experienced in a typical AUSC boiler tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W.-G. Kim, S.-N. Yin, G.-G. Lee, Y.-W. Kim, and S.-J. Kim, Creep Oxidation Behaviour and Creep Strength Prediction for Alloy 617, Int. J. Press. Vessel. Pip., 2010, 87, p 289–295. https://doi.org/10.1016/j.ijpvp.2010.03.008

    Article  CAS  Google Scholar 

  2. W.-G. Kim, J.-Y. Park, I.M.W. Ekaputra, S.-J. Kim, M.-H. Kim, and Y.-W. Kim, Creep Deformation and Rupture Behavior of Alloy 617, Eng. Fail. Anal., 2015, 58, p 441–451. https://doi.org/10.1016/j.engfailanal.2015.07.041

    Article  CAS  Google Scholar 

  3. S.K. Sharma, C. Jang, and K.J. Kang, Effect of Thermo-Mechanical Processing on Microstructure and Creep Properties of the Foils of Alloy 617, J. Nucl. Mater., 2009, 389, p 420–426. https://doi.org/10.1016/j.jnucmat.2009.02.029

    Article  CAS  Google Scholar 

  4. S. Chomette, J.-M. Gentzbittel, and B. Viguier, Creep Behaviour of as Received, Aged and Cold Worked INCONEL 617 at 850 °C and 950 °C, J. Nucl. Mater., 2010, 399, p 266–274. https://doi.org/10.1016/j.jnucmat.2010.01.019

    Article  CAS  Google Scholar 

  5. P.S. Shankar and K. Natesan, Effect of Trace Impurities in Helium on the Creep Behavior of Alloy 617 for Very High Temperature Reactor Applications, J. Nucl. Mater., 2007, 366, p 28–36. https://doi.org/10.1016/j.jnucmat.2006.12.028

    Article  CAS  Google Scholar 

  6. J.K. Wright, T.M. Lillo, R.N. Wright, W.-G. Kim, I.-J. Sah, E.-S. Kim, J.-Y. Park, and M.-H. Kim, Creep and Creep-Rupture of Alloy 617, Nucl. Eng. Des., 2018, 329, p 142–146. https://doi.org/10.1016/j.nucengdes.2017.07.014

    Article  CAS  Google Scholar 

  7. W.G. Kim, J.-Y. Park, I.M.W. Ekaputra, M.-H. Kim, and Y.-W. Kim, Analysis of Creep Behavior of Alloy 617 for Use of VHTR System, Procedia, Mater. Sci., 2014, 3, p 1285–1290. https://doi.org/10.1016/j.mspro.2014.06.208

    Article  CAS  Google Scholar 

  8. F.H. Norton, The Creep of Steel at High Temperatures, McGraw-Hill, NewYork, 1929.

    Google Scholar 

  9. F.C. Monkman and N.J. Grant, An Empirical Relationship between Rupture Life and Minimum Creep Rate in Creep-Rupture Tests, Proc. Am. Soc. Test. Mater., 1956, 56, p 593–620.

    Google Scholar 

  10. F.R. Larson and J. Miller, Time-Temperature Relationship for Rupture and Creep Stresses, Trans. ASME., 1952, 74, p 765–771.

    Google Scholar 

  11. A.K. Roy, M.H. Hasan, and J. Pal, Creep Deformation of Alloys 617 and 276 at 750-950 °C, Mater. Sci. Eng. A., 2009, 520, p 184–188. https://doi.org/10.1016/j.msea.2009.05.029

    Article  CAS  Google Scholar 

  12. R. Viswanathan, and W. Bakker, Materials for Ultrasupercritical Coal Power Plants—Boiler Materials: Part 1, J. Mater. Eng. Perform., 2001, 10, p 81–95. https://doi.org/10.1361/105994901770345394

    Article  CAS  Google Scholar 

  13. T.B. Gibbons, Superalloys in Modern Power Generation Applications, Mater. Sci. Technol., 2009, 25, p 129–135. https://doi.org/10.1179/174328408X355433

    Article  CAS  Google Scholar 

  14. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants, J. Mater. Eng. Perform., 2005, 14, p 281–292. https://doi.org/10.1361/10599490524039

    Article  CAS  Google Scholar 

  15. Q. Wu, H. Song, R.W. Swindeman, J.P. Shingledecker, and V.K. Vasudevan, Microstructure of Long-Term Aged IN617 Ni-Base Superalloy, Metall. Mater. Trans. A., 2008, 39, p 2569–2585. https://doi.org/10.1007/s11661-008-9618-y

    Article  CAS  Google Scholar 

  16. W.L. Mankins, J.C. Hosier, and T.H. Bassford, Microstructure and Phase Stability of INCONEL Alloy 617, Metall. Trans., 1974, 5, p 2579–2590. https://doi.org/10.1007/BF02643879

    Article  CAS  Google Scholar 

  17. S.F. Di Martino, R.G. Faulkner, S.C. Hogg, S. Vujic, and O. Tassa, Characterisation of Microstructure and Creep Properties of Alloy 617 for High-Temperature Applications, Mater. Sci. Eng. A., 2014, 619, p 77–86. https://doi.org/10.1016/j.msea.2014.09.046

    Article  CAS  Google Scholar 

  18. E. Gariboldi, M. Cabibbo, S. Spigarelli, and D. Ripamonti, Investigation on Precipitation Phenomena of Ni-22Cr-12Co-9Mo Alloy Aged and Crept At High Temperature, Int. J. Press. Vessel. Pip., 2008, 85, p 63–71. https://doi.org/10.1016/j.ijpvp.2007.06.014

    Article  CAS  Google Scholar 

  19. J.K. Benz, L.J. Carroll, J.K. Wright, R.N. Wright, and T.M. Lillo, Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures, Metall. Mater. Trans. A., 2014, 45, p 3010–3022. https://doi.org/10.1007/s11661-014-2244-y

    Article  CAS  Google Scholar 

  20. S. Yamasaki, M. Mitsuhara, and H. Nakashima, Deformation Microstructure and Fracture Behavior in Creep-Exposed Alloy 617, Mater. Trans., 2017, 58, p 442–449. https://doi.org/10.2320/matertrans.M2016407

    Article  CAS  Google Scholar 

  21. V. Knezevic, A. Schneider, and C. Landier, Creep Behaviour of Thick-Wall Alloy 617 Seamless Pipes for 700 °C Power Plant Technology, Procedia Eng., 2013, 55, p 240–245. https://doi.org/10.1016/j.proeng.2013.03.249

    Article  CAS  Google Scholar 

  22. R. Krishna, H.V. Atkinson, S.V. Hainsworth, and S.P. Gill, Gamma Prime Precipitation, Dislocation Densities, and TiN in Creep-Exposed Inconel 617 Alloy, Metall. Mater. Trans. A., 2016, 47, p 178–193. https://doi.org/10.1007/s11661-015-3193-9

    Article  CAS  Google Scholar 

  23. M. Speicher, F. Kauffmann, J.-H. Shim, and M. Chandran, Microstructure Evolution in Alloy 617 B after a Long-Term Creep and Thermal Aging at 700 °C, Mater. Sci. Eng. A., 2018, 711, p 165–174. https://doi.org/10.1016/j.msea.2017.11.004

    Article  CAS  Google Scholar 

  24. K. Maile, Qualification of Ni-Based Alloys for Advanced Ultra Supercritical Plants, Procedia Eng., 2013, 55, p 214–220. https://doi.org/10.1016/j.proeng.2013.03.245

    Article  CAS  Google Scholar 

  25. S. Bagui, B.P. Sahu, K. Laha, S. Tarafder, and R. Mitra, Creep Deformation Behavior of Inconel 617 Alloy in the Temperature Range of 650 °C to 800 °C, Metall. Mater. Trans. A., 2021, 52, p 94–107. https://doi.org/10.1007/s11661-020-06066-8

    Article  CAS  Google Scholar 

  26. S. Bagui, M. Mandal, B.K. Sahoo, K. Laha, S. Tarafder, and R. Mitra, Investigation of Non-Classical Creep Behavior of Inconel 617 Alloy at 700 °C and 800 °C through Interrupted Tests and Microstructural Characterizations, Mater. Sci. Eng. A., 2022 https://doi.org/10.1016/j.msea.2021.142474

    Article  Google Scholar 

  27. F. Dobeš and K. Milička, The Relation between Minimum Creep Rate and Time to Fracture, Met. Sci., 1976, 10, p 382–384. https://doi.org/10.1080/03063453.1976.11683560

    Article  Google Scholar 

  28. W.G. Kim, S.H. Kim, and W.S. Ryu, Evaluation of Monkman-Grant Parameters for Type 316LN and Modified 9Cr-Mo Stainless Steels, KSME Int. J., 2002, 16, p 1420–1427. https://doi.org/10.1007/BF02985134

    Article  Google Scholar 

  29. B.K. Choudhary, S. Saroja, K.B. Sankara Rao, and S.L. Mannan, Creep-Rupture Behavior of Forged, Thick Section 9Cr-1Mo Ferritic Steel, Metall. Mater. Trans. A., 1999, 30, p 2825–2834. https://doi.org/10.1007/s11661-999-0120-y

    Article  Google Scholar 

  30. C. Phaniraj, B.K. Choudhary, K. Bhanu Sankara Rao, and B. Raj, Relationship between Time to Reach Monkman-Grant Ductility and Rupture Life, Scr. Mater., 2003, 48, p 1313–1318. https://doi.org/10.1016/S1359-6462(03)00021-6

    Article  CAS  Google Scholar 

  31. O.D. Sherby and P.M. Burke, Mechanical Behavior of Crystalline Solids at Elevated Temperature, Prog. Mater. Sci., 1968, 13, p 323–390. https://doi.org/10.1016/0079-6425(68)90024-8

    Article  Google Scholar 

  32. S.L. Robinson and O.D. Sherby, Mechanical Behavior of Polycrystalline Tungsten at Elevated Temperature, Acta Metall., 1969, 17, p 109–125. https://doi.org/10.1016/0001-6160(69)90132-1

    Article  CAS  Google Scholar 

  33. R.W. Bailey, Creep of Steel under Simple and Compound Stress, Engineering, 1930, 121, p 265.

    Google Scholar 

  34. J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, and H. Asahi, Causes of Breakdown of Creep Strength in 9Cr-1.8W-0.5Mo-VNb steel, Mater. Sci. Eng. A., 2006, 428, p 270–275. https://doi.org/10.1016/j.msea.2006.05.010

    Article  CAS  Google Scholar 

  35. C.V. Rao, N.C.S. Srinivas, G.V.S. Sastry, and V. Singh, Effect of Microstructure on Work Hardening Behaviour of IN-617 Alloy, Mater. Sci. Eng. A., 2021, 800, p 140317. https://doi.org/10.1016/j.msea.2020.140317

    Article  CAS  Google Scholar 

  36. R.K. Singh and J.K. Sahu, Yield Strength Anomaly and Dynamic Strain Ageing Behaviour of Recently Developed Advanced Ultra-Supercritical Boiler Grade Wrought Ni-Based Superalloy IN 740H, Mater. High Temp., 2019, 36, p 220–231. https://doi.org/10.1080/09603409.2018.1513675

    Article  Google Scholar 

  37. G.E. Dieter, Mechanical Metallurgy, SI Metric, McGraw-Hill Book company, London, 1988.

    Google Scholar 

  38. C. Jang, D. Lee, and D. Kim, Oxidation Behaviour of an Alloy 617 in Very High-Temperature Air and Helium Environments, Int. J. Press. Vessel. Pip., 2008, 85, p 368–377. https://doi.org/10.1016/j.ijpvp.2007.11.010

    Article  CAS  Google Scholar 

  39. D. Saber, I.S. Emam, and R. Abdel-Karim, High Temperature Cyclic Oxidation of Ni Based Superalloys at Different Temperatures in Air, J. Alloys Compd., 2017, 719, p 133–141. https://doi.org/10.1016/j.jallcom.2017.05.130

    Article  CAS  Google Scholar 

  40. A.K. Ray, S. Kumar, G. Krishna, M. Gunjan, B. Goswami, and S.C. Bose, Microstructural Studies and Remnant Life Assessment of Eleven Years Service Exposed Reformer Tube, Mater. Sci. Eng. A., 2011, 529, p 102–112. https://doi.org/10.1016/j.msea.2011.09.003

    Article  CAS  Google Scholar 

  41. Y. Guo, B. Wang, and S. Hou, Aging Precipitation Behavior and Mechanical Properties of Inconel 617 Superalloy, Acta Metall. Sin. Eng. Lett., 2013, 26, p 307–312. https://doi.org/10.1007/s40195-012-0249-3

    Article  CAS  Google Scholar 

  42. A.N. Singh, A. Moitra, P. Bhaskar, G. Sasikala, A. Dasgupta, and A.K. Bhaduri, Study of Aging-Induced Degradation of Fracture Resistance of Alloy 617 Toward High-Temperature Applications, Metall. Mater. Trans. A., 2017, 48, p 3269–3278. https://doi.org/10.1007/s11661-017-4123-9

    Article  CAS  Google Scholar 

  43. A. Singh, A. Moitra, P. Bhaskar, G. Sasikala, A. Dasgupta, and A.K. Bhaduri, Effect of Thermal Aging on Microstructure, Hardness, Tensile and Impact Properties of Alloy 617, Mater. Sci. Eng. A., 2018, 710, p 47–56. https://doi.org/10.1016/j.msea.2017.10.078

    Article  CAS  Google Scholar 

  44. T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, and K.K. Rink, Creep Rupture Behavior of Grade 91 Steel, Mater. Sci. Eng. A., 2013, 565, p 382–391. https://doi.org/10.1016/j.msea.2012.12.031

    Article  CAS  Google Scholar 

  45. B.F. Dyson and T.B. Gibbons, Tertiary Creep in Nickel-Base Superalloys: Analysis of Experimental Data and Theoretical Synthesis, Acta Metall., 1987, 35, p 2355–2369. https://doi.org/10.1016/0001-6160(87)90083-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors sincerely acknowledge the in-house project (No. OLP-0253) of CSIR-National Metallurgical Laboratory, Jamshedpur, to execute the present investigation. Authors are thankful to the help received from the Central Research Facility, IIT Kharagpur, for TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Bagui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagui, S., Sahu, B.P., Mahato, B. et al. Effect of Microstructural Evolution on Creep and Rupture Behavior of Inconel 617 Alloy. J. of Materi Eng and Perform 32, 1292–1309 (2023). https://doi.org/10.1007/s11665-022-07162-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07162-z

Keywords

Navigation