Skip to main content
Log in

Insights on Microstructure and Failure Characteristics of Resistance Spot Welds of Galvannealed Dual Phase Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work examines the effect of spot-welding current on the load-bearing capacity and the fracture mechanism of galvannealed dual-phase steel (DP600) joints. A greater than three-fold increase in the load-bearing capacity of the joint was achieved by increasing the welding current from 6 to 9 kA. Quantitative fractography showed a transition from predominantly transgranular cleavage fracture at 6 kA current with only ~7 dimples to ~17% ductile dimples at 7 kA current and eventually 100% ductile dimples for 9 kA current. Detailed microstructure-hardness relationship across the different welding zones is presented using scanning electron microscopy and electron backscattered diffraction techniques. At the optimized welding parameter, load-controlled fatigue tests revealed a decrease in the number of cycles to failure with increasing load amplitude, and endurance was achieved for 10% of the maximum tensile-shear load-bearing capacity. Investigation of failed specimens revealed that while under tensile loading conditions, crack initiated from the base metal, fatigue crack initiated from the heat-affected zone. Also, the possibility of different categories of liquid metal embrittlement cracks are discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D.K. Matlock, J.G. Speer, E. De Moor and P.J. Gibbs, Recent Developments in Advanced High Strength Sheet Steels for Automotive Applications: An Overview, Jestech, 2012, 15, p 1–12.

    Google Scholar 

  2. R. Rana, S.B. Singh, Automotive Steels: Design, Metallurgy, Processing and Applications, first ed. 2016

  3. J.H. Schmitt and T. Lung, New Developments of Advanced High-Strength Steels for Automotive Applications, C R Phys., 2018, 19(8), p 641–656.

    Article  CAS  Google Scholar 

  4. A. Kalhor, M. Soleimani, H. Mirzadeh and V. Uthaisangsuk A review of recent progress in mechanical and corrosion properties of dual phase steels, Arch. Civ. Mech. Eng., 2020, 85

  5. N. Fonstein, Dual-phase Steels (in Automotive Steels: Design, Metallurgy, Processing and Applications), first ed., 2016, pp 169–216

  6. A. Chakraborty, M. Adhikary, T. Venugopalan, V. Singh, T. Nanda and B.R. Kumar, Effect of Ferrite-Martensite Interface Morphology on Bake Hardening Response of DP590 Steel, Mater. Sci. Eng., A, 2016, 676, p 463–473.

    Article  CAS  Google Scholar 

  7. H. Seyedrezain, A.K. Pilkey and J.D. Boyd, Effect of Pre-IC Annealing Treatments on the Final Microstructure and Work Hardening Behavior of a Dual-Phase Steel, Mater. Sci. Eng. A, 2014, 594, p 178–188.

    Article  Google Scholar 

  8. Y. Cao, J. Ahlström and B. Karlsson, The Influence of Temperatures and Strain Rates on the Mechanical Behavior of Dual Phase Steel in Different Conditions, J. Materress Technol., 2015, 4, p 68–74.

    CAS  Google Scholar 

  9. A. Chakraborty, M. Dutta, R. Pais and R.K. Ray, Analysis of an Uncommon Coating Defect on Industrial Galvannealed High Strength Interstitial Free Steel, Surf. Coat. Technol., 2010, 204, p 3481–3489. https://doi.org/10.1016/j.surfcoat.2010.04.020

    Article  CAS  Google Scholar 

  10. M.S. Khan, S.D. Bhole, D.L. Chen, E. Biro, G. Boudreau and J. van Deventer, Welding Behaviour, Microstructure and Mechanical Properties of Dissimilar Resistance Spot Welds Between Galvannealed HSLA350 and DP600 Steels, Sci. Technol. Weld. Join., 2009, 14(7), p 616–625. https://doi.org/10.1179/136217109X12464549883295

    Article  CAS  Google Scholar 

  11. M. Pouranvari and S.P.H. Marashi, Critical Review of Automotive Steels Spot Welding: Process, Structure and Properties, Sci. Technol. Weld. Joining, 2013, 18(5), p 361–403. https://doi.org/10.1179/1362171813Y.0000000120

    Article  CAS  Google Scholar 

  12. A. De, Spot Welding, Sci. Technol. Weld. Joining, 2008, 13, p 213–214.

    Article  Google Scholar 

  13. N.T. Williams and J.D. Parker, Review of Resistance Spot Welding of Steel Sheets: Part 1 – Modelling and Control of Weld Nugget Formation, Int. Mater. Rev., 2004, 49, p 45–75.

    Article  CAS  Google Scholar 

  14. G. Janardhan, K. Kishore, K. Dutta and G. Mukhopadhyay, Tensile and Fatigue Behavior of Resistance Spot Welded HSLA Steel Sheet: Effect of Pre-strain in Association with Dislocation Density, Mater. Sci. Eng., A, 2020, 793, 139796. https://doi.org/10.1016/j,msea.2020.139796

    Article  CAS  Google Scholar 

  15. I. Hajiannia, M. Shamanian, M. Atapour and R. Ashiri, Evaluation of Weldability and Mechanical Properties in Resistance Spot Welding of Ultrahigh-Strength TRIP1100 Steel, SAE Int. J. Mater. Manuf., 2018, 12(1), p 5–18. https://doi.org/10.4271/05-12-01-0001

    Article  Google Scholar 

  16. W. Xu, D. Chen, L. Liu, H. Mori and Y. Zhou, Microstructure and Mechanical Properties of Weld-Bonded and Resistance Spot Welded Magnesium-to-Steel Dissimilar Joints, Mater. Sci. Eng., A, 2012, 537, p 11–24. https://doi.org/10.1016/j.msea.2011.12.096

    Article  CAS  Google Scholar 

  17. Z. Ling, T. Chen, L. Kong, M. Wang and H. Pan, Liquid Metal Embrittlement Cracking During Resistance Spot Welding of Galvanized Q&P980 Steel, Mater. Sci. Eng., A, 2019, 50(11), p 1–15. https://doi.org/10.1007/s11661-019-05388-6

    Article  CAS  Google Scholar 

  18. D. Bhattacharya, Liquid Metal Embrittlement during Resistant Spot Welding of Zn-Coated High-Strength Steels, Mater. Sci. Technol., 2018, 34(1), p 1–21. https://doi.org/10.1080/02670836.2018.1461595

    Article  CAS  Google Scholar 

  19. Z. Ling, M. Wang, L. Kong and K. Chen, Towards an Explanation of Liquid Metal Embrittlement Cracking in Resistance Spot Welding of Dissimilar Steels, Mater. Des., 2020, 195, p 1–14. https://doi.org/10.1016/j.matdes.2020.109055

    Article  CAS  Google Scholar 

  20. R. Chen, C. Zhang, M. Lou, Y. Li and B.E. Carlson, Effect of Al-Si Coating on Weldability of Press-Hardened Steels, J. Mater. Eng. Perform., 2020, 29(1), p 626–636. https://doi.org/10.1007/s11665-020-04555-w

    Article  CAS  Google Scholar 

  21. R. Ashiri, M.A. Haque, C.W. Ji, M. Shamanian, H.R. Salimijazi and Y.D. Park, Supercritical Area and Critical Nugget Diameter for Liquid Metal Embrittlement of Zn-Coated Twining Induced Plasticity Steel, Scr. Mater., 2015, 109, p 6–10. https://doi.org/10.1016/j.scrptamat.2015.07.006

    Article  CAS  Google Scholar 

  22. R. Ashiri, M. Shamanian, H.R. Salimijazi, M.A. Haque, J.H. Bae, C.W. Ji, K.J. Chin and Y.D. Park, Liquid Metal Embrittlement-Free Welds of Zn-Coated Twinning Induced Plasticity Steels, Scr. Mater., 2016, 114, p 41–47. https://doi.org/10.1016/j.scriptamat.2015.11.027

    Article  CAS  Google Scholar 

  23. R. Ashiri, H. Mostaan and Y.D. Park, A Phenomenological Study of Weld Discontinuities and Defects in Resistance Spot Welding of Advanced High Strength TRIP Steel, Metall. Mater. Trans. A., 2018, 49, p 6161–6172. https://doi.org/10.1007/s11661-018-4900-0

    Article  CAS  Google Scholar 

  24. M. Milititsky, E. Pakalnins, C. Jiang and A.K. Thompson, On Characteristics of DP600 Spot Welding, SAE Transactions, J. Mater. Manuf., 2003, 112(5), p 244–251.

    Google Scholar 

  25. M. Pouranvari, Effect of Welding Parameters on the Peak Load and Energy Absorption of Low-Carbon Steel Resistance Spot Welds, Int. Sch. Res. Notices., 2011, 2011, p 1–7. https://doi.org/10.5402/2011/824149

    Article  CAS  Google Scholar 

  26. M. Pouranvari and S.P.H. Marashi, Key Factors Influencing Mechanical Performance of Dual Phase Steel Resistance Spot Welds, Sci. Technol. Weld. Join., 2010, 15(2), p 149–155. https://doi.org/10.1179/136217109X12590746472535

    Article  CAS  Google Scholar 

  27. K. Kishore, P. Kumar and G. Mukhopadhyay, Resistance Spot Weldability of Galvannealed and Bare DP600 Steel, J. Mater. Process. Technol., 2019, 271, p 237–248. https://doi.org/10.1016/j.jmatprotec.2019.04.005

    Article  CAS  Google Scholar 

  28. C. Ma, D.L. Chen, S.D. Bhole, G. Boudreau, A. Lee and E. Biro, Microstructure and Fracture Characteristics of Spot-Welded DP600 Steel, Mater. Sci. Eng., A, 2008, 485, p 334–346. https://doi.org/10.1016/j.msea.2007.08.010

    Article  CAS  Google Scholar 

  29. C.A.N. Lanzillotto and F.B. Pickering, Structure Property Relationships in Dual-Phase Steels, Met. Sci., 1982, 16, p 371–382.

    Article  CAS  Google Scholar 

  30. J.C. Bittence, Dual-Phase Steels Promise Higher Strength Plus Formability, Mater. Eng., 1978, 87, p 39–42.

    Google Scholar 

  31. M. Balbi, I. Alvarez-Armas and A. Armas, Effect of Holding Time at an Intercritical Temperature on the Microstructure and Tensile Properties of a Ferrite–Martensite Dual Phase Steel, Mater Sci Eng A., 2018, 733, p 1–8.

    Article  CAS  Google Scholar 

  32. D. Das and P.P. Chattopadhyay, Influence of Martensite Morphology on the Work-Hardening Behavior of High Strength Ferrite–Martensite Dual-Phase Steel, J Mater Sci., 2009, 44, p 2957–2965.

    Article  CAS  Google Scholar 

  33. L.E. Svensson and J.K. Larsson, Welding and Joining of High Performance Car Bodies, Steel World (UK)., 2002, 7(7), p 21–32.

    CAS  Google Scholar 

  34. G. Janardhan, G. Mukhopadhyay, K. Kishore and K. Dutta, Resistance Spot Welding of Dissimilar Interstitial-Free and High-Strength Low-Alloy Steels, J. Mater. Eng. Perform., 2020, 29, p 3383–3394. https://doi.org/10.1007/s11665-020-04857-z

    Article  CAS  Google Scholar 

  35. M.D. Tumuluru, Resistance Spot Welding of Coated High Strength Dual-Phase Steels, Weld. J., 2006, 85, p 31–37.

    CAS  Google Scholar 

  36. X. Sun, E.V. Stephens and M.A. Khaleel, Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions, Eng. Fail. Anal., 2008, 15(4), p 356–367. https://doi.org/10.1016/j.engfailanal.2007.01.018

    Article  CAS  Google Scholar 

  37. BS 1140:1993, Specification for resistance spot welding of uncoated and coated low carbon steel. British standard. 1993, ISBN: 0-580-21944-5

  38. K. Kishore, P. Kumar and G. Mukhopadhyay, Microstructure, Tensile and Fatigue Behaviour of Resistance Spot Welded Zinc Coated Dual Phase and Interstitial Free Steel, Met. Mater. Int., 2021 https://doi.org/10.1007/s12540-020-00939-8

    Article  Google Scholar 

  39. P. Zhang, J. Xie, Y.X. Wang and J.Q. Chen, Effect of Welding Parameters on Mechanical Properties and Microstructure of Resistance Spot Welded DP600 Joints, Sci. Technol. Weld. Join., 2011, 16(7), p 567–574. https://doi.org/10.1179/136217110X12813393169732

    Article  CAS  Google Scholar 

  40. M. Pouranvari, Susceptibility to Interfacial Failure Mode in Similar and Dissimilar Resistance Spot Welds of DP600 Dual Phase Steel and Low Carbon Steel during Cross Tension and Tensile-Shear Loading Conditions, Mater. Sci. Eng., A, 2012, 546, p 129–138. https://doi.org/10.1016/j.msea.2012.03.040

    Article  CAS  Google Scholar 

  41. M. Tamizi, M. Pouranvari and M. Movahedi, The Role of HAZ Softening on Cross-Tension Mechanical Performance of Martensitic Advanced High Strength Steel Resistance Spot Welds, Metall. Mater. Trans. A., 2021, 52(2), p 655–667. https://doi.org/10.1007/s11661-020-06104-5

    Article  CAS  Google Scholar 

  42. I. Hajiannia, M. Shamanian, M. Atapour, E. Ghassemali and R. Ashiri, A Microstructure Evaluation of Different Areas of the Resistance Spot Welding on New Advanced Ultra-High Strength TRIP1100 Steel, Cogent Eng., 2018, 5(1), p 1–13. https://doi.org/10.1080/23311916.2018.1512939

    Article  Google Scholar 

  43. M. Pouranvari, S. Sobhani and F. Goodarzi, Resistance Spot Welding of MS1200 Martensitic Advanced High Strength Steel: Microstructure-Properties Relationship, J. Manuf. Process., 2018, 31, p 867–874. https://doi.org/10.1016/j.jmapro.2018.01.009

    Article  Google Scholar 

  44. S. Vignier, E. Biro and M. Herve, Predicting the Hardness Profile Across Resistance Spot Welds in Martensitic Steels, Weld World, 2014 https://doi.org/10.1007/s40194-014-0116-0

    Article  Google Scholar 

  45. M.I. Khan, M.L. Kuntz, E. Biro and Y. Zhou, Microstructure, and Mechanical Properties of Resistance Spot Welded Advanced High Strength Steels, Mater. Trans., 2008, 49(7), p 1629–1637. https://doi.org/10.2320/matertrans.MRA2008031

    Article  CAS  Google Scholar 

  46. R. Blondeau, Mathematical Model for the Calculation of Mechanical Properties of Low-Alloy Steel Metallurgical Products, Heat Treat., 1976, 76, p 189–200.

    Google Scholar 

  47. K. Kishore, R.G. Kumar and A.K. Chandan, Critical Assessment of the Strain-Rate Dependent Work Hardening Behaviour of AISI 304 Stainless Steel, Mater. Sci. Eng. A, 2021 https://doi.org/10.1016/j.msea.2020.140675

    Article  Google Scholar 

  48. A. Das and S. Tarafder, Experimental Investigation on Martensitic Transformation and Fracture Morphologies of Austenitic Stainless Steel, Int. J. Plast., 2009, 25, p 2222–2247. https://doi.org/10.1016/j.ijplas.2009.03.003

    Article  CAS  Google Scholar 

  49. A. Das and S. Tarafder, Geometries of Dimples and Its Correlation with Mechanical Properties in Austenitic Stainless Steel, Scr. Mater., 2008, 59(9), p 1014–1017. https://doi.org/10.1016/j.scriptamat.2008.07.012

    Article  CAS  Google Scholar 

  50. B.A. Miller, Overload Failures, Failure Analysis and Prevention. W.T. Becker, R.J. Shipley Ed., ASM International, 2002, p 671–699. https://doi.org/10.31399/asm.hb.v11.a0003543

    Chapter  Google Scholar 

  51. D. Zhao, Y. Wang, D. Liang and P. Zhang, Modelling and Process Analysis of Resistance Spot Welded DP600 Joint Based on Regression Analysis, Mater. Des., 2016, 110, p 676–684. https://doi.org/10.1016/j.matdes.2016.08.038

    Article  CAS  Google Scholar 

  52. G.E. Dieter, Mechanical Metallurgy, 3rd ed. McGraw-hill, New York, 1986.

    Google Scholar 

  53. K. Kishore and M. Adhikary, Metallurgical Investigation and Life Cycle Assessment of a Piston Rod of Thin Slab Caster, J. Fail. Anal. Prev., 2019, 19, p 1407–1419. https://doi.org/10.1007/s11668-019-00738-3

    Article  Google Scholar 

  54. M.H. Razmpoosh, C. DiGiovanni, Y.N. Zhou and E. Biro, Pathway to Understand Liquid Metal Embrittlement (LME) in Fe-Zn Couple: From Fundamentals Toward Application, Prog. Mater Sci., 2021, 121, p 100798. https://doi.org/10.1016/j.pmatsci.2021.100798

    Article  CAS  Google Scholar 

  55. J. Frei, M. Biegler, M. Rethmeier, C. Böhne and G. Meschut, Investigation of Liquid Metal Embrittlement of Dual Phase Steel Joints by Electro-Thermomechanical Spot-Welding Simulation, Sci. Technol. Weld. Join., 2019, 24(7), p 1–10. https://doi.org/10.1080/13621718.2019.1582203

    Article  CAS  Google Scholar 

  56. M.H. Razmpoosh, A. Macwan, F. Goodwin, E. Biro and Y. Zhou, Crystallographic Study of Liquid-Metal-Embrittlement Crack Path, Mater. Lett., 2020, 267, p 127511.

    Article  CAS  Google Scholar 

  57. H. Lee, M.C. Jo, S.S. Sohn, S.H. Kim, T. Song, S.K. Kim, H.S. Kim, N.J. Kim and S. Lee, Microstructural Evolution of Liquid Metal Embrittlement in Resistance-Spot-Welded Galvanized Twinning-Induced Plasticity (TWIP) Steel Sheets, Mater. Charact., 2019, 147, p 233–241. https://doi.org/10.1016/j.matchar.2018.11.008

    Article  CAS  Google Scholar 

  58. S.P. Murugan, V. Vijayan, C. Ji and Y. Park, Four Types of LME Cracks in RSW of Zn-Coated AHSS, Weld. J., 2020, 99(3), p 75–92.

    Article  Google Scholar 

  59. K. Kwon, G. Jang, W. Kim, S. Uhm, T. Lee and C. Lee, Effect of Type-C Liquid Metal Embrittlement on Mechanical Properties of Spot-Welded TRIP Steel, J. Market. Res., 2021, 13, p 2482–2490. https://doi.org/10.1016/j.jmrt.2021.06.041

    Article  CAS  Google Scholar 

  60. K. Mahmud, S.P. Murugan, Y. Cho, C. Ji, D. Nam and Y. Park, Geometrical Degradation of Electrode and Liquid Metal Embrittlement Cracking in Resistance Spot Welding, J. Manuf. Process., 2021, 61, p 334–348. https://doi.org/10.1016/j.jmapro.2020.11.025

    Article  Google Scholar 

  61. O. Siar, Y. Benlatreche, T. Dupuy, S. Dancette and D. Fabrègue, Effect of Severe Welding Conditions on Liquid Metal Embrittlement of a 3rd-Generation Advanced High-Strength Steel, Metals, 2020, 10(9), p 1166–1176. https://doi.org/10.3390/met10091166

    Article  CAS  Google Scholar 

  62. D. Choi, A. Sharma, S. Uhm and J.P. Jung, Liquid Metal Embrittlement of Resistance Spot Welded 1180 TRIP Steel: Effect of Electrode Force on Cracking Behavior, Met. Mater. Int., 2019, 25, p 219–228. https://doi.org/10.1007/s12540-018-0180-x

    Article  CAS  Google Scholar 

  63. G. Janardhan, K. Kishore, G. Mukhopadhyay and K. Dutta, Fatigue Properties of Resistance Spot Welded Dissimilar Interstitial-Free and High Strength Micro-Alloyed Steel Sheets, Met. Mater. Int., 2020 https://doi.org/10.1007/s12540-020-00678-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushal Kishore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 232 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, K., Kumar, P. & Mukhopadhyay, G. Insights on Microstructure and Failure Characteristics of Resistance Spot Welds of Galvannealed Dual Phase Steel. J. of Materi Eng and Perform 31, 10118–10136 (2022). https://doi.org/10.1007/s11665-022-07060-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07060-4

Keywords

Navigation