Skip to main content

Advertisement

Log in

Enhancement of Microstructural and Mechanical Properties of Ultrasonic Vibration-Assisted Cold Metal Transfer Welding of 304 Stainless Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Ultrasonic vibrations aid fabrication techniques that enhance the structural efficiency of manufactured products. It gives an appreciable advantage in the microstructural and mechanical properties of products. In this paper, Ultrasonic assisted Cold Metal Transfer Welding (U-CMT) technique used to join the AISI 304 stainless steel. The welded joints are analyzed using optical microscopy, SEM, and XRD. The microhardness, tensile, and residual testing of the U-CMT welded joint is evaluated and compared with CMT welded joint. The microhardness and tensile results of the U-CMT welded joint show considerable improvement in their mechanical properties due to the refinement of grains in the fusion region, which is produced by ultrasonic vibrations. With vibration welded samples, results show a reduction of residual stresses compared to those without vibration welded samples. This study chose two different ultrasonic vibrational amplitude 50 and 99 µm and three different welding currents, 85, 90, and 95A. U-CMT welded joint prepared with a welding current of 95A and ultrasonic vibrational amplitude of 99 µm shows 100% weld joint efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13.
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N.R. Baddoo, Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities, J Constr. Steel Res., 2008, 64, p 1199–1206.

    Article  Google Scholar 

  2. S. Saha, M. Mukherjee, and T.K. Pal, Microstructure, Texture, and Mechanical Property Analysis of Gas Metal Arc Welded AISI 304 Austenitic Stainless Steel, J. Mater. Eng. Perform., 2015, 24, p 1125–1139.

    Article  CAS  Google Scholar 

  3. P.V.S.S. Sridhar, P. Biswas, and P. Mahanta, Effect of Process Parameters on Bead Geometry, Tensile and Microstructural Properties of Double-Sided Butt Submerged Arc Welding of SS 304 Austenitic Stainless Steel, J. Braz. Soc. Mech. Sci. Eng., 2020, 42, p 551.

    Article  CAS  Google Scholar 

  4. E.O. Ogundimu, E.T. Akinlabi, and M.F. Erinosho, Comparative Study Between TIG and MIG Welding Processes, Int. Conf. Eng. Sust. World, J. Phys. Conf. Ser., 2019, 1378, p 022074.

    CAS  Google Scholar 

  5. S. Selvi, A. Vishvaksenan, and E. Rajasekar, Cold Metal Transfer Technology-An Overview, Def. Technol., 2021, 14, p 28–44.

    Article  Google Scholar 

  6. Y. Koli, N. Yuvaraj, S. Aravindan, and Vipin, CMT Joining of AA6061-T6 and AA6082-T6 and Examining Mechanical Properties and Microstructural Characterization, Trans. Indian Inst. Met., 2021, 74, p 313–329.

    Article  CAS  Google Scholar 

  7. S. Zhou, G. Ma, D. Wu, D. Chai, and M. Lei, Ultrasonic Vibration Assisted Laser Welding of Nickel-Based Alloy and Austenite Stainless Steel, J. Manuf. Process., 2018, 31, p 759–767.

    Article  Google Scholar 

  8. Y. Wang, C. Yu, H. Lu, and J. Chen, Research Status and Future Perspectives on Ultrasonic Arc Welding Technique, J. Manuf. Process., 2020, 58, p 936–954.

    Article  Google Scholar 

  9. M.J. Jose, S.S. Kumar, and A. Sharma, Vibration Assisted Welding Processes and their Influence on Quality of Welds, Sci. Technol. Weld. Join., 2016, 21, p 243–258.

    Article  Google Scholar 

  10. S. Kumar, C.S. Wu, G.K. Padhy, and W. Ding, Application of Ultrasonic Vibrations in Welding and Metal Processing: A Status Review, J. Manuf. Process., 2017, 26, p 295–322.

    Article  Google Scholar 

  11. F. Ning and W. Cong, Ultrasonic Vibration-Assisted (UV-A) Manufacturing Processes: State of the Art and Future Perspectives, J. Manuf. Process., 2020, 51, p 174–190.

    Article  Google Scholar 

  12. T.V. Cunha and C.E.N. Bohorquez, Ultrasound in Arc Welding: A Review, Ultrasonics, 2015, 56, p 201–209.

    Article  Google Scholar 

  13. T. Watanabe, M. Shiroki, A. Yanagisawa, and T. Sasaki, Improvement of Mechanical Properties of Ferritic Stainless Steel Weld Metal by Ultrasonic Vibration, J. Mater. Process. Technol., 2010, 210, p 1646–1651.

    Article  CAS  Google Scholar 

  14. W. Xie, T. Huang, C. Yang, C. Fan, S. Lin, and W. Xu, Comparison of Microstructure, Mechanical Properties, and Corrosion Behavior of Gas Metal Arc (GMA) and Ultrasonic-Wave-Assisted GMA (U-GMA) Welded Joints of Al–Zn–Mg Alloy, J. Mater. Process. Technol., 2020, 277, p 116470.

    Article  CAS  Google Scholar 

  15. W.L. Dai, Effects of High-Intensity Ultrasonic-Wave Emission on the Weldability of Aluminum Alloy 7075–T6, Mater. Lett., 2003, 57, p 2447–2454.

    Article  CAS  Google Scholar 

  16. G. Zhao, Z. Wang, S. Hu, S. Duan, and Y. Chen, Effect of Ultrasonic Vibration of Molten Pool on Microstructure and Mechanical Properties of Ti-6Al-4V Joints Prepared via CMT+ P Welding, J. Manuf. Process., 2020, 52, p 193–202.

    Article  CAS  Google Scholar 

  17. Q.H. Chen, S.B. Lin, C.L. Yang, C.L. Fan, and H.L. Ge, Effect of Ultrasound on Heterogeneous Nucleation in TIG Welding of Al–Li Alloy, Acta. Metall. Sin. Eng., 2016, 29, p 1081–1088.

    Article  CAS  Google Scholar 

  18. T. Yuan, S. Kou, and Z. Luo, Grain Refining by Ultrasonic Stirring of the Weld Pool, Acta. Mater., 2016, 106, p 144–154.

    Article  CAS  Google Scholar 

  19. Y. Tian, J. Shen, S. Hu, Z. Wang, and J. Gou, Effects of Ultrasonic Vibration in the CMT Process on Welded Joints of Al Alloy, J. Mater. Process. Tech., 2018, 259, p 282–291.

    Article  CAS  Google Scholar 

  20. M. Fattahi, A. Ghaheri, N. Arabian, F. Amirkhanlu, and H. Moayedi, Applying the Ultrasonic Vibration During TIG Welding as a Promising Approach for the Development of Nanoparticle Dispersion Strengthened Aluminum Weldments, J. Mater. Process. Technol., 2020, 282, p 116672.

    Article  CAS  Google Scholar 

  21. F. Ning and W. Cong, Microstructures and Mechanical Properties of Fe-Cr Stainless Steel Parts Fabricated by Ultrasonic Vibration-Assisted Laser Engineered Net Shaping Process, Mater. Lett., 2016, 179, p 61–64.

    Article  CAS  Google Scholar 

  22. C. Chen, C. Fan, X. Cai, S. Lin, C. Yang, and Y. Zhuo, Microstructure and Mechanical Properties of Q235 Steel Welded Joint in Pulsed and Un-Pulsed Ultrasonic Assisted Gas Tungsten Arc Welding, J. Mater. Process. Technol., 2020, 275, p 116335.

    Article  CAS  Google Scholar 

  23. C. Chen, C. Fan, S. Lin, X. Cai, L. Zhou, S. Ye, and C. Yang, Effect of Ultrasonic Pattern on Weld Appearance and Droplet Transfer in Ultrasonic Assisted MIG Welding Process, J. Manuf. Process., 2018, 35, p 368–372.

    Article  Google Scholar 

  24. C. Chen, C. Fan, X. Cai, S. Lin, and C. Yang, Analysis of Droplet Transfer, Weld Formation and Microstructure in Al-Cu Alloy Bead Welding Joint with Pulsed Ultrasonic-GMAW Method, J. Mater. Process. Tech., 2019, 271, p 144–151.

    Article  CAS  Google Scholar 

  25. F. Fan, L. Zhou, Z. Liu, C. Yang, S. Lin, W. Xie, and H. Tong, Arc Character and Droplet Transfer of Pulsed Ultrasonic Wave-Assisted GMAW, Int. J. Adv. Manuf. Technol., 2018, 95, p 2219–2226.

    Article  Google Scholar 

  26. C. Hua, H. Lua, C. Yu, J. Chen, X. Wei, and J. Xu, Reduction of Ductility-Dip Cracking Susceptibility by Ultrasonic-Assisted GTAW, J. Mater. Process. Technol., 2017, 239, p 240–250.

    Article  CAS  Google Scholar 

  27. H. Lan, X. Gong, S. Zhang, L. Wang, B. Wang, and L.-P. Nie, Ultrasonic Vibration Assisted Tungsten Inert Gas Welding of Dissimilar Metals 316L and L415, Int. J. Miner. Metall. Mater., 2020, 27, p 943–953.

    Article  CAS  Google Scholar 

  28. Y. Li, S. Tian, C. Wu, and M. Tanaka, Experimental Sensing of Molten Flow Velocity, Weld Pool and Keyhole Geometries in Ultrasonic-Assisted Plasma Arc Welding, J. Manuf. Process., 2021, 64, p 1412–1419.

    Article  Google Scholar 

  29. A.V. Kolubaev, O.V. Sizova, S.V. Fortuna, A.V. Vorontsov, A.N. Ivanov and E.A. Kolubaev, Weld Structure of Low-Carbon Structural Steel Formed by Ultrasonic-Assisted Laser Welding, J. Constr. Steel Res., 2020, 172, p 106190.

    Article  Google Scholar 

  30. S. Yu, A.V. Tarasov, S.V. Vorontsov, V.E. Rubtsov, V.A. Krasnoveikin, and E.A. Kolubaev, Ultrasonic-Assisted Laser Welding on AISI 321 Stainless Steel, Weld. World., 2019, 63, p 875–886.

    Article  Google Scholar 

  31. A.I. Gorunov, O.A. Nyukhlaev, and A. Kh, Investigation of Microstructure and Properties of Low-Carbon Steel During Ultrasonic-Assisted Laser Welding and Cladding, Int. J Adv. Manuf. Technol., 2018, 99, p 2467–2479.

    Article  Google Scholar 

  32. Y. Ou, O. Lu, C. Li, H. Yan, P. Zhang, and J. Jin, Effect of Vibration Frequency on Microstructure and Properties of Laser-Welded Inconel 718 Nickel-Base Superalloy, J. Mater. Eng. Perform., 2021, 30, p 2399–2407.

    Article  CAS  Google Scholar 

  33. J. Jin, Q. Lu, P. Zhang, C. Li, and H. Yan, Research on Microstructure and Fatigue Properties of Vibration-Assisted 5052 Aluminum Alloy Laser Welded Joints, J. Mater. Eng. Perform., 2020, 29, p 4197–4205.

    Article  CAS  Google Scholar 

  34. H. Chen, N. Guo, Z. Zhang, C. Liu, L. Zhou and G. Wang, A Novel Strategy for Metal Transfer Controlling in Underwater Wet Welding Using Ultrasonic-Assisted Method, Mater. Lett., 2020, 270, p 127692.

    Article  CAS  Google Scholar 

  35. N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588.

    Article  Google Scholar 

  36. P.K. Taraphdar, R. Kumar, C. Pandey, and M.M. Mahapatra, Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of weld Induced Residual Stresses, Met. Mater. Int., 2021 https://doi.org/10.1007/s12540-020-00921-4

    Article  Google Scholar 

  37. C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini, Effect of Weld Consumable Conditioning on the Diffusible Hydrogen and Subsequent Residual Stress and Flexural Strength of Multipass Welded P91 Steels, Metall. Mater. Trans. B., 2018, 49B, p 2881–2895.

    Article  Google Scholar 

  38. S.D. Banik, S. Kumar, and P.K. Singh, Distortion and Residual Stresses in Thick Plate Weld Joint of Austenitic Stainless Steel: Experiments and Analysis, J Mater. Process. Technol., 2021, 289, p 116944.

    Article  CAS  Google Scholar 

  39. P.K. Taraphdar, J.G. Thakare, C. Pandey, and M.M. Mahapatra, Novel Residual Stress Measurement Technique to Evaluate Through Thickness Residual Stress Fields, Mater. Lett., 2020, 277, p 128347.

    Article  CAS  Google Scholar 

  40. H. Lai and W. Wu, Practical Examination of the Welding Residual Stress in View of Low-Carbon Steel Welds, J Mater. Res. Technol., 2020, 9, p 2717–2726.

    Article  CAS  Google Scholar 

  41. B. Kumar, S. Bag, S. Mahadevan, C.P. Paul, C.R. Das, and K.S. Bindra, On the Interaction of Microstructural Morphology with Residual Stress in Fiber Laser Welding of Austenitic Stainless Steel, CIRP J. Manuf. Sci. Technol., 2021, 33, p 158–175.

    Article  Google Scholar 

  42. R. Gadallah, S. Tsutsumi, Y. Aoki, and H. Fujii, Investigation of Residual Stress Within Linear Friction Welded Steel Sheets by Alternating Pressure via X-ray Diffraction and Contour Method Approaches, J. Manuf. Process., 2021, 64, p 1223–1234.

    Article  Google Scholar 

  43. D.A. Lesyk, H. Soyama, B.N. Mordyuk, V.V. Dzhemelinskyi, S. Martinez, N.I. Khripta, and A. Lamikiz, Mechanical Surface Treatments of AISI 304 Stainless Steel: Effects on Surface Microrelief, Residual Stress and Microstructure, J. Mater. Eng. Perform., 2019, 28, p 5307–5322.

    Article  CAS  Google Scholar 

  44. M. Vykunta Rao, P. Srnivasa Rao, and B. Surendra Babu, Vibratory Weld Conditioning During Gas Tungsten Arc Welding of Al 5052 Alloy on the Mechanical and Micro-Structural Behavior, World J. Eng., 2020, 17(6), p 831–836.

    Article  CAS  Google Scholar 

  45. J. Singh and A.S. Shahi, Weld Joint Design and Thermal Aging Influence on the Metallurgical, Sensitization and Pitting Corrosion Behavior of AISI 304L Stainless Steel Welds, J. Manuf. Process., 2018, 33, p 126–135.

    Article  Google Scholar 

  46. Q.J. Sun, S.B. Lin, C.L. Yang, and G.Q. Zhao, Penetration Increase of AISI 304 Using Ultrasonic Assisted Tungsten Inert Gas Welding, Sci. Technol. Weld. Join., 2009, 14, p 765–767.

    Article  CAS  Google Scholar 

  47. C.-W. Kuo, S.-M. Yang, J.-H. Chen, G.-H. Lai and W. Wu, Study of Vibration Welding Mechanism, Sci. Technol. Weld. Join., 2008, 13, p 357–362.

    Article  CAS  Google Scholar 

  48. B. Wei, Unidirectional Dendritic Solidification Under Longitudinal Resonant Vibration, Acta Metall. Mater., 1992, 40, p 2739–2751.

    Article  CAS  Google Scholar 

  49. Q. Chen, S. Lin, C. Yang, C. Fan, and H. Ge, Grain Fragmentation in Ultrasonic-Assisted TIG Weld of Pure Aluminum, Ultrason. Sonochem., 2017, 39, p 403–413.

    Article  CAS  Google Scholar 

  50. C. Pandey, Mechanical and Metallurgical Characterization of Dissimilar P92/SS304 L Welded Joints Under Varying Heat Treatment Regimes, Metall. Mater. Trans. A., 2020, 51A, p 2126–2142.

    Article  Google Scholar 

  51. G.R. Mirshekari, E. Tavakoli, M. Atapour, and B. Sadeghian, Microstructure and Corrosion Behavior of Multipass Gas Tungsten Arc Welded 304L Stainless Steel, Mater. Des., 2014, 55, p 905–911.

    Article  CAS  Google Scholar 

  52. S. Balbande, R.V. Taiwade, A.P. Patil, and U. Pathak, Cold Metal Transfer Welding of Duplex with Ferritic and Super Austenitic Stainless Steel, Mater. Res. Express, 2019, 6, p 106542.

    Article  CAS  Google Scholar 

  53. J.G. Roy, N. Yuvaraj, and Vipin, Effect of Welding Parameters on Mechanical Properties of Cold Metal Transfer Welded Thin AISI 304 Stainless-Steel Sheets, Trans. Indian Inst. Met., 2021, 74, p 2397–2408.

    Article  Google Scholar 

  54. S. Kumar and A.S. Shahi, Effect of Heat Input on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints, Mater. Des., 2011, 32, p 3617–3623.

    Article  CAS  Google Scholar 

  55. C. Hsieh, P. Wang, J. Wang, and W. Wu, Evolution of Microstructure and Residual Stress Under Various Vibration Modes in 304 Stainless Steel Welds, Sci. World J., 2014 https://doi.org/10.1155/2014/895790

    Article  Google Scholar 

  56. C. Hsieh, C. Lai, and W. Wu, Effect of Vibration on Microstructures and Mechanical Properties of 304 Stainless Steel GTA Welds, Metals. Mater. Int., 2013, 19, p 835–844.

    Article  CAS  Google Scholar 

  57. Y. Koli, N. Yuvaraj, S. Vipin, and S. Aravindan, Investigations on Weld Bead Geometry and Microstructure in CMT, MIG Pulse Synergic and MIG Welding of AA6061-T6, Mater. Res. Express, 2020, 6, p 1265e5.

    Article  Google Scholar 

  58. J. Yan, M. Gao and X. Zeng, Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by TIG, Laser and Laser-TIG Hybrid Welding, Opt. Lasers Eng., 2010, 48, p 512–517.

    Article  Google Scholar 

  59. H. Eisazadeh and D.K. Aidun, Residual Stress Reduction in Dissimilar Metals Weld, J. Manuf. Process., 2021, 64, p 1462–1475.

    Article  Google Scholar 

  60. S. Aoki, T. Nishimura and T. Hiroi, Reduction Method for Residual Stress of Welded Joint Using Random Vibration, Nucl. Eng. Des., 2005, 235, p 1441–1445.

    Article  CAS  Google Scholar 

  61. L. Qinghua, C. Ligong, and N. Chunzhen, Effect of Vibratory Weld Conditioning on Welded Valve Properties, Mech. Mater., 2008, 40, p 565–574.

    Article  Google Scholar 

  62. T.C. Chuvas, D.A. Castello and M.P.C. Fonseca, Residual Stress Relief of Welded Joints by Mechanical Vibrations, J. Braz. Soc. Mech. Sci. Eng., 2016, 38, p 2449–2457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yuvaraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvaraj, N., Roy, J.G. & Vipin Enhancement of Microstructural and Mechanical Properties of Ultrasonic Vibration-Assisted Cold Metal Transfer Welding of 304 Stainless Steel. J. of Materi Eng and Perform 31, 8497–8511 (2022). https://doi.org/10.1007/s11665-022-06877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06877-3

Keywords

Navigation