Skip to main content
Log in

Structural Evolution in Thin Films of Ag2Te1−xSex (x~0.3) Alloy Prepared by Thermal Evaporation Technique

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Evolution of structure and properties in ternary Ag2Te1−xSex (x~0.3) alloy is examined in the present paper. Stoichiometric quantity of pure powders of Ag2Te and Ag2Se was mixed in a ball mill and then melted at high temperature, 1025°C in a vacuum sealed quartz tube, followed by annealing at 700°C for 12 hours. Thin films of Ag2Te.7Se.3 of different thickness viz.25, 50, 100, and 150 nm are produced by thermal evaporation method. Thermal evaporation method is carried out by resistive heating of the solid of Ag2Te.7Se.3 sample at 1000°C under a high vacuum (pressure in the chamber is less than 10−5 mbar). The thin films were subjected to structural analysis by XRD, microstructural study by scanning electron microscopy and optical property study by UV-Vis. spectroscopy. It is found that Ag2Te1−xSex (x~0.3) is formed by alloying of two solid solutions, of which one is based on Ag2Te with Se as solute and the other is Ag2Se-based solid solution in which Te is the solute. The peak position of Ag2Te-based solid solution is shifted toward higher angle whereas a reverse trend is observed in Ag2Se-based solution. The microstructure is composed of a solid solution of Ag2Te and Ag2Se along with the fine dispersion of elemental silver, tellurium and selenium. The optical band gap varies within 1.4 to 2.2 eV over the thickness range from 25 to 150 nm. The band gap initially increases with the film thickness, and beyond 50 nm, the band gap continuously decreases to 1.7 eV. The transmittance is lower for higher film thickness; while transmittance increases with wavelength, the rate of increase is enhanced in the infrared region. The absorption coefficient of thin films of Ag2Te.7Se.3 is as high as of the order of 105 cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Copyright 2021, with permission from Elsevier

Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. S.A. Khan, M. Zulfequar and M. Husain, Laser-Induced Amorphization and Crystallization on Se80Te20-xPbx Thin Films, Vacuum, 2004, 72, p 291–296.

    Article  Google Scholar 

  2. P.F. Taylor and C. Wood, Thermoelectric Properties of Ag2Te, J. Appl. Phys., 1961, 32(1), p 1–3. https://doi.org/10.1063/1.1735932

    Article  CAS  Google Scholar 

  3. D.Y. Jung, K. Kurosaki, Y. Ohishi, H. Muta and S. Yamanaka, Effect of Phase Transition on the Thermolectric Properties of Ag2Te, Mater. Trans., 2012, 53(7), p 1216–1219.

    Article  CAS  Google Scholar 

  4. K. Zhou, J. Chen, R. Zheng, X. Ke, T. Zhang, X. Shi and L. Chen, Non-epitaxial Pulsed Laser Depostion of Ag2Se Thermoelectric Thin Films for Near-room Temperature Applications, Ceramics Int., 2016, 42, p 12490–12495.

    Article  CAS  Google Scholar 

  5. R. Wu, Z. Li, Y. Li, L. You, P. Luo, J. Yang and J. Luo, Synergistic Optimization of Thermoelectric Performance in P-type Ag2Tethrough Cu Substitution, J. Materiomics, 2019, 5, p 489–495.

    Article  Google Scholar 

  6. Z.I. Wang (edited), Nanowires and Nanobelts, Material, Properties and Devices, Kluwer Press, Norwell, MA, (2003)

  7. J. Liu, T. Xing, Z. Gao, J. Liang, L. Peng, J. Xiao, P. Qiu, X. Shi and L. Chenl, Enhanced Thermoelectric Performance in Ductile Ag2S-Based Materials via Doping Iodine, Appl. Phys. Lett., 2021, 119, p 121905–6.

    Article  CAS  Google Scholar 

  8. H. Zhu, J. Luo, H. Zhao and J. Liang, Enhanced Thermoelectric Properties of P-type Ag2Te by Cu Substitution, J. Mater. Chem. A, 2015, 3, p 10303–08.

    Article  CAS  Google Scholar 

  9. Y. Sun, M.B. Salamon, M. Lee and T.F. Rosenbaum, Giant Magnetothermopower Associated with Large Magnetoresistance in Ag2-δTe, Appl. Phys. Lett., 2003, 82, p 1440–1442. https://doi.org/10.1063/1.1558896

    Article  CAS  Google Scholar 

  10. H. Hu, K. Xia, Y. Wang, C. Fu, T. Zhu and X. Zhao, Fast Synthesis and Improved Electrical Stability in n-type Ag2Te Thermoelectric Materials, J. Mater. Sci. Technol., 2021, 91, p 241–250.

    Article  CAS  Google Scholar 

  11. S. He, Y. Li, L. Liu, Y. Jiang, J. Feng, W. Zhu, J. Zhang, Z. Dong, Y. Deng, J. Luo, W. Zhang and G. Chen, Semiconductor Glass with Superior Flexibility and High Room Temperature Thermoelectric Performance, Sci. Adv., 2020, 6, p 1–7.

    Article  Google Scholar 

  12. V. Vassilev, V. Vachkov and S. Parvanov, On one Possible for Application of New Thermoelectric Materials Based on Ag2Te, Section: Chemistry, pp. 147–154 (2011)

  13. T. Ohtani, K. Maruyamaand and K. Ohshima, Synthesis of Copper, Silver, and Samarium Chalcogenides by Mechanical Alloying, Mater. Res. Bull, 1997, 32, p 343–350.

    Article  CAS  Google Scholar 

  14. M. Pandiaraman, N. Soundararajana and R. Ganesan, Optical Studies of Physically Deposited Nano-Ag2Te Thin Films, Defect Diffusion Forum, 2011, 319–320, p 185–192. https://doi.org/10.4028/www.scientific.net/DDF.319-320.185

    Article  CAS  Google Scholar 

  15. U.K. Gautam, M. Natha and C.N.R. Rao, New Strategies for the Synthesis of t-selenium Nanorods and Nanowires, J. Mater. Chem., 2003, 13, p 2845–2847.

    Article  CAS  Google Scholar 

  16. R. Chen, D. Xu, G. Guo and L. Gui, Preparation of Ag2Se and Ag2Se1 − xTex Nanowires by Electro Deposition from DMSO Baths, Electrochem. Commun., 2003, 5(7), p 579–583. https://doi.org/10.1016/S1388-2481(03)00133-4

    Article  CAS  Google Scholar 

  17. S. Yang, Z. Gao, P. Qiu, J. Liang, T.R. Wei, T. Deng, J. Xiao, X. Shi and L. Chen, Ductile Ag20S7Te3 with Excellent Shape-Conformability and High Thermoelectric Performance, Adv. Mater., 2021, 33(1–9), p 2007681. https://doi.org/10.1002/adma.202007681

    Article  CAS  Google Scholar 

  18. R. Dalven and R. Gill, Energy Gap in β-Ag2Se, Phys. Rev., 1967, 159, p 645–649. https://doi.org/10.1103/PhysRev.159.645

    Article  CAS  Google Scholar 

  19. J. Conn and R. Taylor, Thermoelectric and Crystallographic Properties of Ag2Se, J. Electrochem. Soc., 1960, 107, p 977–982.

    Article  CAS  Google Scholar 

  20. A.K. Singh and A. Subramaniam, On the Formation of Disordered Solid Solutions in Multi-component Alloys, J. Alloy. Compd., 2014, 587, p 113–119. https://doi.org/10.1016/j.jallcom.2013.10.133

    Article  CAS  Google Scholar 

  21. F. Monteverde and F. Saraga, Entropy Stabilized Single-Phase (Hf, Nb, Ta, Ti, Zr) B2 Solid Solution Powders Obtained via Carbo/boro-Thermal Reduction, J. Alloy. Compd., 2020, 824, p 153930. https://doi.org/10.1016/j.jallcom.2020.153930

    Article  CAS  Google Scholar 

  22. T. Zhu, X. Su, Q. Zhang and X. Tang, Structural Transformation and Thermoelectric Performance in Ag2Te1−xSex Solid solution, J. Alloys Compounds, 2021, 871, p 159507.

    Article  CAS  Google Scholar 

  23. C. Vijayan, M. Pandiaraman, N. Sundararajan, R. Chandramohan, D. Dhanasekaran, K. Sundaram, T. Mahalingam and A.J. Peter, Structural and Optical Properties of Ag2SeTe Nano Thin Films Prepared by Thermal Evaporation, J. Mater. Sci: Mater. Electron, 2011, 22, p 545–550.

    CAS  Google Scholar 

  24. M. Pandiaraman, N. Soundararajan and C. Vijayan, Effect of Thickness on the Optical Band Gap of Silver Telluride Thin Films, J. Ovonic Res., 2011, 7, p 21–27.

    CAS  Google Scholar 

  25. Y. Hutabalian and S.W. Chen, Interfacial Reactions in Ag/Se, Ag/Se-30at%Te and Ag2Te/Se Couples and the Phase Equilibria of the Ag-Se-Te Ternary System, J. Alloys Compounds, 2021, 889, p 161580.

    Article  Google Scholar 

  26. S. Yang, K. Cho, J. Yun, J. Chol and S. Kim, Thermoelectric Characteristics of γ-Ag2Te Nanoparticle Thin Films on Flexible Substrates, Thin Solid Films, 2017, 641, p 65–68. https://doi.org/10.1016/j.tsf.2017.01.068

    Article  CAS  Google Scholar 

  27. S. Lee, H.S. Shin, J.Y. Song and M.H. Jung, Thermoelectric Properties of a Single Crystalline Ag2Te Nanowire, Hindawi J. Nanomater., 2017, 2017, p 1–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Banerjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Chowrasia, M.K., Gupta, M.K. et al. Structural Evolution in Thin Films of Ag2Te1−xSex (x~0.3) Alloy Prepared by Thermal Evaporation Technique. J. of Materi Eng and Perform 31, 7945–7954 (2022). https://doi.org/10.1007/s11665-022-06864-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06864-8

Keywords

Navigation