Skip to main content
Log in

Mechanical Properties Evaluation and Parametric Optimization of Atmospheric Plasma Spray NiTi Coating

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current investigation, the mechanical properties evaluation and optimization of process parameters of plasma-sprayed NITINOL coating on mild steel substrate has been performed. The relation between the mechanical properties and process parameters of the coating was established by proposing a nonlinear regression equation. The obtained coefficient of determination (R2) and the mean relative error for microhardness (99.7 and 4.85%) and adhesion strength (99.2 and 6.88%) confirmed the statistical validity of the proposed nonlinear regression equation. The Genetic Algorithm optimization technique was implemented to obtain the optimized parametric setting for the plasma spray coating process. To check the quality of the coating fabricated by the optimized parametric combination (plasma arc current of 550 A and primary gas flow rate of 45 lpm), the characterizations (x-ray diffraction, scanning electron microscope, energy dispersive spectroscopy, and 3D surface roughness measurement) of the coating were performed. The SEM morphology of the surface and the interface of the coating revealed the better flattening behavior of the splat and the lamellar structure of the coating, respectively. The obtained phases (Ni, Ti, NiTi, Ti2Ni, Ni3Ti, Ni4Ti3, TiO, NiO) found in the XRD pattern were confirmed from the EDS analysis at various regions of the specimen surface, and the obtained coating surface roughness (roughness average (Sa)) is 12.35 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

A :

Primary gas flow rate (lpm)

B :

Plasma arc current (A)

C :

Substrate preheated temperature (°C)

D :

Powder feed rate (g/min)

E :

Carrier gas flow rate (lpm)

F :

Secondary gas flow rate (lpm)

G :

Stand-off distance (mm)

H :

Table speed (rpm)

I :

SPPS injector angle (°)

J :

Injector off set (mm)

ρ :

Porosity (%)

τ :

Coating thickness (µm)

ϕ :

Tough phase fraction (%)

ψ :

Hard phase fraction (%)

σ c :

Adhesion strength (MPa)

K c :

Fracture toughness (MPa-m1/2)

H v :

Microhardness (GPa/HV)

η :

Deposition efficiency (%)

έ :

Corrosion (%)

ζ :

Crystallinity (%)

O :

Oxide content (%)

Δ:

Purity (%)

VPS:

Vacuum plasma spray

APS:

Atmospheric plasma spray

HVOF:

High velocity oxy-fuel

LPHS:

Laser plasma hybrid spray

References

  1. S. Kumar Patel, B. Swain, R. Roshan, N.K. Sahu and A. Behera, A Brief Review of Shape Memory Effects and Fabrication Processes of NiTi Shape Memory Alloys, Mater. Today Proc., 2020, 33, p 5552–5556. https://doi.org/10.1016/j.matpr.2020.03.539

    Article  CAS  Google Scholar 

  2. E. Alarcon, L. Heller, S.A. Chirani, P. Šittner, J. Kopeček, L. Saint-Sulpice and S. Calloch, Fatigue Performance of Superelastic NiTi near Stress-Induced Martensitic Transformation, Int. J. Fatigue, 2017, 95, p 76–89.

    Article  CAS  Google Scholar 

  3. K.C. Atli, The Effect of Tensile Deformation on the Damping Capacity of NiTi Shape Memory Alloy, J. Alloys Compd., 2016, 679, p 260–267. https://doi.org/10.1016/j.jallcom.2016.04.102

    Article  CAS  Google Scholar 

  4. H.C. Lin, H.M. Liao, J.L. He, K.C. Chen and K.M. Lin, Wear Characteristics of TiNi Shape Memory Alloys, Metall. Mater. Trans. A, 1997, 2000(28), p 1871–1877.

    Article  Google Scholar 

  5. J.M. Guilemany, N. Cinca, S. Dosta and A.V. Benedetti, Corrosion Behaviour of Thermal Sprayed Nitinol Coatings, Corros. Sci., 2009, 51(1), p 171–180. https://doi.org/10.1016/j.corsci.2008.10.022

    Article  CAS  Google Scholar 

  6. L.M. Yang, A.K. Tieu, D.P. Dunne, S.W. Huang, H.J. Li, D. Wexler and Z.Y. Jiang, Cavitation Erosion Resistance of NiTi Thin Films Produced by Filtered Arc Deposition, Wear, 2009, 267(1–4), p 233–243.

    Article  CAS  Google Scholar 

  7. H. Nuruddin, I.M. Kamal, M.N. Mansor and N.M. Hafid, Investigation on the Effect of Bulbous Bow Shape to the Wave-Making Resistance of an Ultra Large Container Carrier (ULCC), ARPN J. Eng. Appl. Sci., 2017, 12(4), p 1254–1259. https://doi.org/10.1016/J.MATDES.2013.11.084

    Article  CAS  Google Scholar 

  8. J. Van Humbeeck, Non-Medical Applications of Shape Memory Alloys, Mater. Sci. Eng. A, 1999, 275, p 134–148.

    Article  Google Scholar 

  9. D. Stoeckel, Shape Memory Actuators for Automotive Applications, Mater. Des., 1991, 11(6), p 302–307.

    Article  Google Scholar 

  10. S. Daghash, O.E. Ozbulut and M.M. Sherif, Shape Memory Alloy Cables for Civil Infrastructure Systems, Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Structural Health Monitoring; Keynote Presentation, Am. Soc. Mech. Eng., 2014 https://doi.org/10.1115/SMASIS2014-7562

    Article  Google Scholar 

  11. O.E. Ozbulut, S. Daghash and M.M. Sherif, Shape Memory Alloy Cables for Structural Applications, J. Mater. Civ. Eng., 2016, 28(4), p 1–10.

    Article  Google Scholar 

  12. S. Shabalovskaya, J. Anderegg and J. Van Humbeeck, Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications, Acta Biomater., 2008, 4(3), p 447–467.

    Article  CAS  Google Scholar 

  13. S.K. Patel, B. Behera, B. Swain, R. Roshan, D. Sahoo and A. Behera, A Review on NiTi Alloys for Biomedical Applications and Their Biocompatibility, Mater. Today Proc., 2020 https://doi.org/10.1016/j.matpr.2020.03.538

    Article  Google Scholar 

  14. N. Cinca, A. Isalgué, J. Fernández and J.M. Guilemany, Structure Characterization and Wear Performance of NiTi Thermal Sprayed Coatings, Smart Mater Struct., 2010, 19(8), p 085011. https://doi.org/10.1088/0964-1726/19/8/085011

    Article  CAS  Google Scholar 

  15. M.M. Verdian, K. Raeissi and M. Salehi, Corrosion Performance of HVOF and APS Thermally Sprayed NiTi Intermetallic Coatings in 3.5% NaCl Solution, Corros. Sci., 2010, 52(3), p 1052–1059. https://doi.org/10.1016/j.corsci.2009.11.034

    Article  CAS  Google Scholar 

  16. H. Hiraga, T. Inoue, H. Shimura and A. Matsunawa, Cavitation Erosion Mechanism of NiTi Coatings Made by Laser Plasma Hybrid Spraying, Wear, 1999, 231(2), p 272–278.

    Article  CAS  Google Scholar 

  17. H. Hiraga, T. Inoue, A. Matsunawa and H. Shimura, Effect of Laser Irradiation Condition on Bonding Strength in Laser Plasma Hybrid Spraying, Surf. Coatings Technol., 2001, 138(2–3), p 284–290.

    Article  CAS  Google Scholar 

  18. J. Stella, E. Schüller, C. Heßing, O.A. Hamed, M. Pohl and D. Stöver, Cavitation Erosion of Plasma-Sprayed NiTi Coatings, Wear, 2006, 260(9–10), p 1020–1027.

    Article  CAS  Google Scholar 

  19. M.M. Verdian, M. Salehi and K. Raeissi, Effect of Feedstock Particle Size on Microstructure of APS Coatings Prepared from Mechanically Alloyed Nickel-Titanium Powders, Surf. Eng., 2010, 26(6), p 447–452. https://doi.org/10.1179/026708409X12490360425927

    Article  CAS  Google Scholar 

  20. B. Swain, M. Priyadarshini, S.S. Mohapatra, R.K. Gupta and A. Behera, Parametric Optimization of Atmospheric Plasma Spray Coating Using Fuzzy TOPSIS Hybrid Technique, J. Alloys Compd., 2021, 867, 159074. https://doi.org/10.1016/j.jallcom.2021.159074

    Article  CAS  Google Scholar 

  21. B. Swain, P. Mallick, R.K. Gupta, S.S. Mohapatra, Y. Malik, T.A. Nguyen and A. Behera, Mechanical and Tribological Properties Evaluation of Plasma-Sprayed Shape Memory Alloy Coating, J. Alloys Compd., 2021 https://doi.org/10.1016/j.jallcom.2021.158599

    Article  Google Scholar 

  22. B. Swain, S. Patel, P. Mallick, S.S. Mohapatra and A. Behera, Solid Particle Erosion Wear of Plasma Sprayed NiTi Alloy Used for Aerospace Applications, Proc. Int. Therm. Spray Conf., 2019, 2019, p 346–351.

    Google Scholar 

  23. B. Swain, A.R. Pati, S.S. Mohapatra and A. Behera, Interchanging Characteristic of Plasma Spray Coating from Superhydrophobic to Hydrophilic under the Applied Electric Field, Surf. Eng., 2021 https://doi.org/10.1080/02670844.2021.1959286

    Article  Google Scholar 

  24. B. Swain, A.R. Pati, P. Mallick, S.S. Mohapatra and A. Behera, Development of Highly Durable Superhydrophobic Coatings by One-Step Plasma Spray Methodology, J. Therm. Spray Technol., 2021 https://doi.org/10.1007/s11666-020-01132-4

    Article  Google Scholar 

  25. P. Mallick, B. Behera, S.K. Patel, B. Swain, R. Roshan and A. Behera, Plasma Spray Parameters to Optimize the Properties of Abrasion Coating Used in Axial Flow Compressors of Aero-Engines to Maintain Blade Tip Clearance, Mater. Today Proc., 2020, 33, p 5691–5697. https://doi.org/10.1016/j.matpr.2020.03.835

    Article  CAS  Google Scholar 

  26. B. Behera, P. Mallick, B. Swain, S. Kumar Patel, R. Roshan and A. Behera, Surface Modified Mild Steel and Copper Using Homogenized Fly-Ash + Quartz + Ilmenite by Plasma Technology, Mater. Today Proc., 2020, 33, p 5703–5708. https://doi.org/10.1016/j.matpr.2020.04.526

    Article  CAS  Google Scholar 

  27. S.K. Bhuyan, S. Samal, D. Pattnaik, A. Sahu, B. Swain, T.K. Thiyagarajan, and S.C. Mishra, Effect of Bauxite Addition on Adhesion Strength and Surface Roughness of Fly Ash Based Plasma Sprayed Coatings, in IOP Conference Series: Materials Science and Engineering (2018)

  28. H. Herman, Plasma-Sprayed Coatings, Sci. Am., 1988, 259(3), p 112–117.

    Article  CAS  Google Scholar 

  29. S. Lathabai, M. Ottmüller and I. Fernandez, Solid Particle Erosion Behaviour of Thermal Sprayed Ceramic, Metallic and Polymer Coating, Wear, 1998, 221(2), p 93–108.

    Article  CAS  Google Scholar 

  30. B. Swain, S. Bajpai and A. Behera, Microstructural Evolution of NITINOL and Their Species Formed by Atmospheric Plasma Spraying, Surf. Topogr. Metrol. Prop., 2018, 7(1), p 015006. https://doi.org/10.1088/2051-672x/aaf30e

    Article  CAS  Google Scholar 

  31. M. Saremi, A. Afrasiabi and A. Kobayashi, Microstructural Analysis of YSZ and YSZ/Al2O3 Plasma Sprayed Thermal Barrier Coatings after High Temperature Oxidation, Surf. Coat. Technol., 2008, 202(14), p 3233–3238. https://doi.org/10.1016/j.surfcoat.2007.11.029

    Article  CAS  Google Scholar 

  32. G. Bertrand, P. Bertrand, P. Roy, C. Rio and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow Psz Spheres: Correlation between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202(10), p 1994–2001.

    Article  CAS  Google Scholar 

  33. S.V. Shinde, E.J. Gildersleeve, V.C.A. Johnson and S. Sampath, Segmentation Crack Formation Dynamics during Air Plasma Spraying of Zirconia, Acta Mater., 2020, 183, p 196–206. https://doi.org/10.1016/j.actamat.2019.10.052

    Article  CAS  Google Scholar 

  34. J. Zhu, H. Xie, Z. Hu, P. Chen and Q. Zhang, Residual Stress in Thermal Spray Coatings Measured by Curvature Based on 3D Digital Image Correlation Technique, Surf. Coatings Technol., 2011, 206(6), p 1396–1402. https://doi.org/10.1016/j.surfcoat.2011.08.062

    Article  CAS  Google Scholar 

  35. F. Lu, W. Huang and H. Liu, Thermal Shock Resistance and Failure Analysis of Plasma-Sprayed Thick 8YSZ-Al2O3 Composite Coatings, Surf. Coatings Technol., 2019, 2020(384), p 125290. https://doi.org/10.1016/j.surfcoat.2019.125290

    Article  CAS  Google Scholar 

  36. B. Swain, P. Mallick, S.K. Bhuyan, S.S. Mohapatra, S.C. Mishra and A. Behera, Mechanical Properties of NiTi Plasma Spray Coating, J. Therm. Spray Technol., 2020, 29(4), p 741–755. https://doi.org/10.1007/s11666-020-01017-6

    Article  CAS  Google Scholar 

  37. B. Swain, A. Patnaik, S.K. Bhuyan, K.N. Barik, S.K. Sethi, S. Samal, S.C. Mishra and A. Behera, Solid Particle Erosion Wear on Plasma Sprayed Mild Steel and Copper Surface, Mater. Today Proc., 2018, 5, p 20403–20412.

    Article  CAS  Google Scholar 

  38. B. Swain, P. Mallick, S.S. Mohapatra, A. Behera, D.K. Rajak and P.L. Menezes, Atmospheric Plasma Spray Coating of NiTi on Mild Steel Substrate: An Microstructural Investigation, J. Bio- Tribo-Corros., 2021, 7(3), p 104. https://doi.org/10.1007/s40735-021-00541-4

    Article  Google Scholar 

  39. B. Swain and A. Behera, Effect of Powder Feed Rate on Adhesion Strength and Microhardness of APS NiTi Coating: A Microstructural Investigation, Surf. Topogr. Metrol. Prop., 2021, 9(2), p 025039. https://doi.org/10.1088/2051-672X/ac0a38

    Article  CAS  Google Scholar 

  40. D. Thirumalaikumarasamy, V. Balasubramanian and S. Sree Sabari, Prediction and Optimization of Process Variables to Maximize the Young’s Modulus of Plasma Sprayed Alumina Coatings on AZ31B Magnesium Alloy, J. Magnes. Alloys, 2017, 5(1), p 133–145. https://doi.org/10.1016/j.jma.2017.02.002

    Article  CAS  Google Scholar 

  41. E. Lugscheider, C. Barimani, P. Eckert and U. Eritt, Modeling of the APS Plasma Spray Process, Comput. Mater. Sci., 1996, 7(1–2), p 109–114. https://doi.org/10.1016/S0927-0256(96)00068-7

    Article  CAS  Google Scholar 

  42. E.P. Song, J. Ahn, S. Lee and N.J. Kim, Microstructure and Wear Resistance of Nanostructured Al2O3–8wt.%TiO2 Coatings Plasma-Sprayed with Nanopowders, Surf. Coatings Technol., 2006, 201(3–4), p 1309–1315. https://doi.org/10.1016/j.surfcoat.2006.01.052

    Article  CAS  Google Scholar 

  43. S. Yugeswaran, V. Selvarajan, M. Vijay, P.V. Ananthapadmanabhan and K.P. Sreekumar, Influence of Critical Plasma Spraying Parameter (CPSP) on Plasma Sprayed Alumina-Titania Composite Coatings, Ceram. Int., 2010, 36(1), p 141–149. https://doi.org/10.1016/j.ceramint.2009.07.012

    Article  CAS  Google Scholar 

  44. B. Kumar, S. Soumya, S. Mohapatra and G. Power, Sensitivity of Process Parameters in Atmospheric Plasma Spray Coating, J. Therm. Spray Eng., 2018, 1(1), p 1–6.

    Article  Google Scholar 

  45. R. Kingswell, K.T. Scott and L.L. Wassell, Optimizing the Vacuum Plasma Spray Deposition of Metal, Ceramic, and Cermet Coatings Using Designed Experiments, J. Therm. Spray Technol., 1993, 2(2), p 179–185. https://doi.org/10.1007/BF02652027

    Article  CAS  Google Scholar 

  46. A. Rico, A. Salazar, M.E. Escobar, J. Rodriguez and P. Poza, Optimization of Atmospheric Low-Power Plasma Spraying Process Parameters of Al2O3-50w.t%Cr2O3 Coatings, Surf. Coatings Technol., 2018, 354, p 281–296. https://doi.org/10.1016/j.surfcoat.2018.09.032

    Article  CAS  Google Scholar 

  47. J.R. Mawdsley, Y.J. Su, K.T. Faber and T.F. Bernecki, Optimization of Small-Particle Plasma-Sprayed Alumina Coatings Using Designed Experiments, Mater. Sci. Eng. A, 2001, 308(1–2), p 189–199.

    Article  Google Scholar 

  48. T.J. Levingstone, N. Barron, M. Ardhaoui, K. Benyounis, L. Looney and J. Stokes, Application of Response Surface Methodology in the Design of Functionally Graded Plasma Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2017, 313, p 307–318. https://doi.org/10.1016/j.surfcoat.2017.01.113

    Article  CAS  Google Scholar 

  49. J.F. Li, H. Liao, B. Normand, C. Cordier, G. Maurin, J. Foct and C. Coddet, Uniform Design Method for Optimization of Process Parameters of Plasma Sprayed TiN Coatings, Surf. Coat. Technol., 2003, 176(1), p 1–13.

    Article  CAS  Google Scholar 

  50. J.F. Li, H.L. Liao, C.X. Ding and C. Coddet, Optimizing the Plasma Spray Process Parameters of Yttria Stabilized Zirconia Coatings Using a Uniform Design of Experiments, J. Mater. Process. Technol., 2005, 160(1), p 34–42. https://doi.org/10.1016/j.jmatprotec.2004.02.039

    Article  CAS  Google Scholar 

  51. A.R. Pelton, T.W. Duerig and D. Stöckel, A Guide to Shape Memory and Superelasticity in Nitinol Medical Devices, Minim. Invasive Ther. Allied Technol., 2004, 13(4), p 218–221.

    Article  CAS  Google Scholar 

  52. V.I. Itin, V.E. Gyunter, S.A. Shabalovskaya and R.L.C. Sachdeva, Mechanical Properties and Shape Memory of Porous Nitinol, Mater. Charact., 1994, 32(3), p 179–187.

    Article  CAS  Google Scholar 

  53. Z. Shi, J. Wang, Z. Wang, Y. Qiao, T. Xiong and Y. Zheng, Cavitation Erosion and Jet Impingement Erosion Behavior of the NiTi Coating Produced by Air Plasma Spraying, Coatings, 2018, 8(10), p 346.

    Article  Google Scholar 

  54. M. Bitzer, N. Rauhut, G. Mauer, M. Bram, R. Vaßen, H.P. Buchkremer, D. Stöver and M. Pohl, Cavitation-Resistant NiTi Coatings Produced by Low-Pressure Plasma Spraying (LPPS), Wear, 2015, 328–329, p 369–377. https://doi.org/10.1016/j.wear.2015.03.003

    Article  CAS  Google Scholar 

  55. M.M. Verdian, K. Raeissi and M. Salehi, Electrochemical Impedance Spectroscopy of HVOF-Sprayed NiTi Intermetallic Coatings Deposited on AISI 1045 Steel, J. Alloys Compd., 2010, 507(1), p 42–46. https://doi.org/10.1016/j.jallcom.2010.07.132

    Article  CAS  Google Scholar 

  56. “ASTM E-2109-14 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. ASTM International, 2014, p 4–7, https://www.astm.org/e2109-01r14.html. Accessed 6 December 2021.

  57. H. Chen, S.W. Lee, H. Du, C.X. Ding and C.H. Choi, Influence of Feedstock and Spraying Parameters on the Depositing Efficiency and Microhardness of Plasma-Sprayed Zirconia Coatings, Mater. Lett., 2004, 58(7–8), p 1241–1245. https://doi.org/10.1016/j.matlet.2003.09.015

    Article  CAS  Google Scholar 

  58. L.C. Erickson, H.M. Hawthorne and T. Troczynski, Correlations between Microstructural Parameters, Micromechanical Properties and Wear Resistance of Plasma Sprayed Ceramic Coatings, Wear, 2001, 250(1–12), p 569–575.

    Article  Google Scholar 

  59. T. Gnaeupel-Herold, H.J. Prask, J. Barker, F.S. Biancaniello, R.D. Jiggetts and J. Matejicek, Microstructure, Mechanical Properties, and Adhesion in IN625 Air Plasma Sprayed Coatings, Mater. Sci. Eng. A, 2006, 421(1–2), p 77–85.

    Article  Google Scholar 

  60. H.S. Ahn and B.J. Roylance, Stress Behaviour of Surface-Coated Materials in Concentrated Sliding Contact, Surf. Coatings Technol., 1990, 41(1), p 1–15.

    Article  Google Scholar 

  61. C.S. Ramachandran, V. Balasubramanian and P.V. Ananthapadmanabhan, Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology, J. Therm. Spray Technol., 2011, 20(3), p 590–607.

    Article  CAS  Google Scholar 

  62. A.H. Pakseresht, E. Ghasali, M. Nejati, K. Shirvanimoghaddam, A.H. Javadi and R. Teimouri, Development Empirical-Intelligent Relationship between Plasma Spray Parameters and Coating Performance of Yttria-Stabilized Zirconia, Int. J. Adv. Manuf. Technol., 2014, 76(5–8), p 1031–1045.

    Google Scholar 

  63. M.F. Morks, N.F. Fahim and A. Kobayashi, Microstructure, Corrosion Behavior, and Microhardness of Plasma-Sprayed W-Ni Composite Coatings, J. Manuf. Process., 2008, 10(1), p 6–11. https://doi.org/10.1016/j.jmapro.2008.12.001

    Article  Google Scholar 

  64. M.H. Miller and A.T. Zander, Effect in the Argon D.C. Plasma, Spectrochim. Acta Part B At. Spectrosc., 1986, 41(5), p 453–467.

    Article  Google Scholar 

  65. C.J. Li and B. Sun, Microstructure and Property of Micro-Plasma-Sprayed Cu Coating, Mater. Sci. Eng. A, 2004, 379(1–2), p 92–101.

    Article  Google Scholar 

  66. G. Montavon, C.C. Berndt, C. Coddet, S. Sampath and H. Herman, Quality Control of the Intrinsic Deposition Efficiency from the Controls of the Splat Morphologies and the Deposit Microstructure, J. Therm. Spray Technol., 1997, 6(2), p 153–166.

    Article  CAS  Google Scholar 

  67. A.H. Pakseresht, A.H. Javadi, M. Nejati, K. Shirvanimoghaddam, E. Ghasali and R. Teimouri, Statistical Analysis and Multiobjective Optimization of Process Parameters in Plasma Spraying of Partially Stabilized Zirconia, Int. J. Adv. Manuf. Technol., 2014, 75(5–8), p 739–753.

    Article  Google Scholar 

  68. M. Brossa and E. Pfender, Probe Measurements in Thermal Plasma Jets, Plasma Chem. Plasma Process., 1988, 8(1), p 75–90.

    Article  CAS  Google Scholar 

  69. D. Thirumalaikumarasamy, K.S. Kamalamoorthy and V.B. Visvalingam, Effect of Experimental Parameters on the Micro Hardness of Plasma Sprayed Alumina Coatings on AZ31B Magnesium Alloy, J. Magnes. Alloy., 2015, 3(3), p 237–246. https://doi.org/10.1016/j.jma.2015.06.002

    Article  CAS  Google Scholar 

  70. J.A. Sue and H.H. Troue, Influence of Crystallographic Orientation, Residual Strains, Crystallite Size and Microhardness on Erosion in ZrN Coating, Surf. Coatings Technol., 1989, 39–40, p 421–434. https://doi.org/10.1016/S0257-8972(89)80004-0

    Article  Google Scholar 

  71. T.C. Totemeier, R.N. Wright and W.D. Swank, Microstructure and Stresses in HVOF Sprayed Iron Aluminide Coatings, J. Therm. Spray Technol., 2002, 11(3), p 400–408.

    Article  CAS  Google Scholar 

  72. S.H. Leigh and C.C. Berndt, A Test for Coating Adhesion on Flat Substrates—a Technical Note, J. Therm. Spray Technol., 1994, 3(2), p 184–190.

    Article  CAS  Google Scholar 

  73. K.P. Sreekumar, J. Karthikeyan, P. V Ananthapadmanabhan, N. Venkatramani, and U.K. Chatterjee, Plasma Spray Technology Process Parameters and Applications, (India) (1991). http://inis.iaea.org/search/search.aspx?orig_q=RN:23025102

  74. R. Mukherjee, S. Chakraborty and S. Samanta, Selection of Wire Electrical Discharge Machining Process Parameters Using Non-Traditional Optimization Algorithms, Appl. Soft Comput. J., 2012, 12(8), p 2506–2516. https://doi.org/10.1016/j.asoc.2012.03.053

    Article  Google Scholar 

  75. C.M. Lin, Parameter Optimisation of a Vacuum Plasma Spraying Process Using Boron Carbide, J. Therm. Spray Technol., 2012, 21(5), p 873–881.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, B., Chatterjee, S., Mohapatra, S.S. et al. Mechanical Properties Evaluation and Parametric Optimization of Atmospheric Plasma Spray NiTi Coating. J. of Materi Eng and Perform 31, 8270–8284 (2022). https://doi.org/10.1007/s11665-022-06834-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06834-0

Keywords

Navigation