Skip to main content
Log in

Microstructure and Crystallographic Texture Evolution during Isothermal Annealing of Cold-Rolled Fe-6.8Al Low-Density Steel

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, the microstructural evolution in heavily cold-rolled and annealed Fe-6.8Al low-density steel has been studied. The evolution of texture with a strong component \(\left\{ {001} \right\}\langle 110\rangle\) has been observed upon cold rolling. After recrystallisation, the formation of texture with \(\left\{ {111} \right\}110\) component and other γ fiber orientations with weak intensities have been noticed. The mechanism of recrystallisation is discontinuous recrystallisation. The evolution of texture with near \(\left( {04\overline{1}} \right)\left[ {501} \right]\) and \(\left( {31\overline{8}} \right)\left[ {\overline{4}\overline{3}\overline{2}} \right]\) components in the partially recrystallised microstructures have been observed. The recrystallised grains nucleate close to the boundaries of the deformed grains and are bounded by high angle grain boundaries which are easily identified from the image quality maps. Analysis of grain size of the annealed samples shows that the presence of Al reduces the grain boundary mobility by solute drag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Rana, C. Liu, and R.K. Ray, Low-Density Low-Carbon Fe–Al Ferritic Steels, Scr. Mater., 2013, 68, p 354–359. https://doi.org/10.1016/j.scriptamat.2012.10.004

    Article  CAS  Google Scholar 

  2. C. Liu, R. Rana, Low Density High Strength Steel and Method for Producing Said Steel, European Patent, 2015. https://www.google.com/patents/WO2013034317A1?cl=en

  3. D.-W.D.W. Suh and N.J.J. Kim, Low-Density Steels, Scr. Mater., 2013, 68, p 337–338. https://doi.org/10.1016/j.scriptamat.2012.11.037

    Article  CAS  Google Scholar 

  4. I. Gutierrez-Urrutia and D. Raabe, Influence of Al Content and Precipitation State on the Mechanical Behavior of Austenitic High-Mn Low-Density Steels, Scr. Mater., 2013, 68, p 343–347. https://doi.org/10.1016/j.scriptamat.2012.08.038

    Article  CAS  Google Scholar 

  5. I. Gutierrez-Urrutia and D. Raabe, Multistage Strain Hardening Through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe–Mn–Al–C Steel, Acta Mater., 2012, 60, p 5791–5802. https://doi.org/10.1016/j.actamat.2012.07.018

    Article  CAS  Google Scholar 

  6. R. Rana and C. Liu, Thermoelectric Power in Low-Density Interstitial-Free Iron-Aluminium Alloys, Philos. Mag. Lett., 2013, 93, p 502–511. https://doi.org/10.1080/09500839.2013.813981

    Article  CAS  Google Scholar 

  7. W.K. Choo, J.H. Kim, and J.C. Yoon, Microstructural Change in Austenitic Fe-30.0wt.%Mn-7.8wt.%Al-1.3wt.%C Initiated by Spinodal Decomposition and its Influence on Mechanical Properties, Acta Mater., 1997, 45, p 4877–4885. https://doi.org/10.1016/S1359-6454(97)00201-2

    Article  CAS  Google Scholar 

  8. G. Frommeyer and U. Brüx, Microstructures and Mechanical Properties of High-Strength Fe-Mn-Al-C Light-Weight TRIPLEX Steels, Steel Res. Int., 2006, 77, p 627.

    Article  CAS  Google Scholar 

  9. R. Saha and R.K. Ray, Texture and Grain Growth Characteristics in a Boron Added Interstitial Free Steel After Severe Cold Rolling and Annealing, Mater. Sci. Eng. A., 2010, 527, p 1882–1890. https://doi.org/10.1016/J.MSEA.2009.11.019

    Article  Google Scholar 

  10. I. Samajdar, B. Verlinden, P. Van Houtte, and D. Vanderschueren, γ-Fibre Recrystallization Texture in IF-Steel: An Investigation on the Recrystallization Mechanisms, Mater. Sci. Eng. A., 1997, 238, p 343–350. https://doi.org/10.1016/S0921-5093(97)00455-3

    Article  Google Scholar 

  11. K. Eloot, K. Okuda, K. Sakata, and T. Obara, Texture Evolution during Cold Rolling and Recrystallisation of IF Steel with a Strong 111 Hot Band Texture, ISIJ Int., 1998, 38, p 602–609. https://doi.org/10.2355/ISIJINTERNATIONAL.38.602

    Article  CAS  Google Scholar 

  12. R. Saha and R.K. Ray, Effect of Severe Cold Rolling and Annealing on the Development of Texture, Microstructure and Grain Boundary Character Distribution in an Interstitial Free (IF) Steel, ISIJ Int., 2008, 48, p 976–983. https://doi.org/10.2355/ISIJINTERNATIONAL.48.976

    Article  CAS  Google Scholar 

  13. L. Jinxia, L. Zhanying, G. Cairu, W. Zhaodong, L. Xianghua, and W. Guodong, Evolution of Textures in Interstitial Free Steel during Multiple Cold Rolling and Annealing, J. Mater. Process. Technol., 2005, 167, p 132–137. https://doi.org/10.1016/J.JMATPROTEC.2004.10.010

    Article  Google Scholar 

  14. T. Urabe and J.J. Jonas, Modeling Texture Change during the Recrystallization of an IF Steel, ISIJ Int., 1994, 34, p 435–442. https://doi.org/10.2355/ISIJINTERNATIONAL.34.435

    Article  CAS  Google Scholar 

  15. S. Pramanik and S. Suwas, Low-Density Steels: The Effect of Al Addition on Microstructure and Properties, JOM., 2014, 66, p 1868–1876. https://doi.org/10.1007/s11837-014-1129-2

    Article  CAS  Google Scholar 

  16. S. Pramanik, S. Koppoju, A.V. Anupama, B. Sahoo, and S. Suwas, Strengthening Mechanisms in Fe-Al Based Ferritic Low-Density Steels, Mater. Sci. Eng. A., 2018, 712, p 574–584. https://doi.org/10.1016/j.msea.2017.10.056

    Article  CAS  Google Scholar 

  17. L. Lutterotti, Total Pattern Fitting for the Combined Size-Strain-Stress-Texture Determination in thin Film Diffraction, Nucl. Inst. Methods Phys. Res. Sect B Beam Interact. Mater. Atoms., 2010, 268, p 334–340. https://doi.org/10.1016/j.nimb.2009.09.053

    Article  CAS  Google Scholar 

  18. R. Hielscher and H. Schaeben, A Novel Pole Figure Inversion Method: Specification of the MTEX Algorithm, J. Appl. Crystallogr., 2008, 41, p 1024–1037. https://doi.org/10.1107/S0021889808030112

    Article  CAS  Google Scholar 

  19. B. Beausir and J.-J. Fundenberger, ATOM—Analysis Tools for Orientation Maps, http://atom-software.eu/, (2015)

  20. M.H. Alvi, S.W. Cheong, H. Weiland, and A.D. Rollett, Recrystallization and texture development in hot rolled 1050 aluminum, in: Mater. Sci. Forum, Trans Tech Publ, 2004: pp. 357–362

  21. S. Biswas, D.-I. Kim, and S. Suwas, Asymmetric and Symmetric Rolling of Magnesium: Evolution of Microstructure, Texture and Mechanical Properties, Mater. Sci. Eng. A., 2012, 550, p 19–30. https://doi.org/10.1016/j.msea.2012.03.099

    Article  CAS  Google Scholar 

  22. A.A. Gazder, A.A. Saleh, and E.V. Pereloma, Microtexture Analysis of Cold-Rolled and Annealed Twinning-Induced Plasticity Steel, Scr. Mater., 2011, 65, p 560–563. https://doi.org/10.1016/j.scriptamat.2011.06.026

    Article  CAS  Google Scholar 

  23. J.-J. Fundenberger and B. Beausir, JTEX—Software for Texture Analysis, http://jtex-software.eu/, (2015)

  24. H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, and T. Sakai, Deformation Mechanism and Texture and Microstructure Evolution during High-Speed Rolling of AZ31B Mg Sheets, J. Mater. Sci., 2008, 43, p 7148–7156. https://doi.org/10.1007/s10853-008-3021-3

    Article  CAS  Google Scholar 

  25. Y. Takayama and J.A. Szpunar, Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending, Mater. Trans., 2004, 45, p 2316–2325. https://doi.org/10.2320/matertrans.45.2316

    Article  CAS  Google Scholar 

  26. C.N. Athreya, S. Suwas, and V. Subramanya Sarma, Influence of Mode of Deformation on Microstructural Heterogeneities in Ni Subjected to Large Strain Deformation, Philos. Mag. Lett., 2015, 95, p 441–449. https://doi.org/10.1080/09500839.2015.1085129

    Article  CAS  Google Scholar 

  27. W. Pantleon, Resolving the Geometrically Necessary Dislocation Content by Conventional Electron Backscattering Diffraction, Scr. Mater., 2008, 58, p 994–997. https://doi.org/10.1016/j.scriptamat.2008.01.050

    Article  CAS  Google Scholar 

  28. I. Ghamarian, Y. Liu, P. Samimi, and P.C. Collins, Development and Application of a Novel Precession Electron Diffraction Technique to Quantify and Map Deformation Structures in Highly Deformed Materials—As Applied to Ultrafine-Grained titanium, Acta Mater., 2014, 79, p 203–215. https://doi.org/10.1016/j.actamat.2014.06.063

    Article  CAS  Google Scholar 

  29. S. Sinha, A. Pukenas, A. Ghosh, A. Singh, W. Skrotzki, and N.P. Gurao, Effect of Initial Orientation on Twinning in Commercially Pure Titanium, Philos. Mag., 2017, 97, p 775–797. https://doi.org/10.1080/14786435.2017.1279364

    Article  CAS  Google Scholar 

  30. H. Hu, Grain Growth in Zone-Refined Iron, Can. Metall. Q., 1974, 13, p 275–286.

    Article  CAS  Google Scholar 

  31. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Pearson, London, 2001.

    Google Scholar 

  32. R. Rana, C. Liu, and R.K. Ray, Recrystallization in a Low-Density Low-Alloy Fe–Mn–Al–C Duplex-Phase Alloy, Philos. Mag. Lett., 2014, 94, p 127–134. https://doi.org/10.1080/09500839.2013.878046

    Article  CAS  Google Scholar 

  33. H. Jazaeri and F.J. Humphreys, The Transition From Discontinuous to Continuous Recrystallization in some Aluminium Alloys: II—Annealing Behaviour, Acta Mater., 2004, 52, p 3251–3262. https://doi.org/10.1016/j.actamat.2004.03.031

    Article  CAS  Google Scholar 

  34. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A., 1997, 238, p 219–274.

    Article  Google Scholar 

  35. H. Nakamichi, J.F. Humphreys, P.S. Bate, and I. Brough, In-Situ EBSD Observation of the Recrystallization of an IF Steel at High Temperature, Mater. Sci. Forum., 2007, 550, p 441–446. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/MSF.550.441

    Article  CAS  Google Scholar 

  36. D. Vanderschueren, N. Yoshinaga, and K. Koyama, Recrystallisation of Ti IF Steel Investigated with Electron Backscattering Pattern (EBSP), ISIJ Int., 1996, 36, p 1046–1054. https://doi.org/10.2355/ISIJINTERNATIONAL.36.1046

    Article  CAS  Google Scholar 

  37. B. Hutchinson and D. Artymowicz, Mechanisms and Modelling of Microstructure/Texture Evolution in Interstitial-free Steel Sheets, ISIJ Int., 2001, 41, p 533–541. https://doi.org/10.2355/ISIJINTERNATIONAL.41.533

    Article  CAS  Google Scholar 

  38. R.L. Every and M. Hatherly, Anealing of Low-Carbon Drawing Grade Steels, J. Austral. Inst. Met., 1974, 19, p 186–193.

    CAS  Google Scholar 

  39. H. Nakamichi, F.J. Humphreys, and I. Brough, Recrystallization Phenomena in an IF Steel Observed by in situ EBSD Experiments, J. Microsc., 2008, 230, p 464–471.

    Article  CAS  Google Scholar 

  40. I. Samajdar, B. Verlinden, and P. Van Houtte, Development of Recrystallization Texture in IF-Steel: An Effort to Explain Developments in Global Texture from Microtextural Studies, Acta Mater., 1998, 46, p 2751–2763.

    Article  CAS  Google Scholar 

  41. A. Haldar, S. Suwas, and D. Bhattacharjee, Microstructure and Texture in Steels: and Other Materials, Springer, London, 2009.

    Book  Google Scholar 

  42. K.L.P. Rajasekhara S.A. Kyrolainen, and P.J. Ferreira, Kinetics of grain growth in ultra-fine grained AISI 301LN stainless steel, In: P.K. and S. Hertzman (Ed.), Proc. 6th Eur. Stainl. Steel Conf., 2008: pp. 511–517

  43. S. Majumdar, S. Raveendra, I. Samajdar, P. Bhargava, and I.G. Sharma, Densification and Grain Growth during Isothermal Sintering of Mo and Mechanically Alloyed Mo-TZM, Acta Mater., 2009, 57, p 4158–4168. https://doi.org/10.1016/j.actamat.2009.05.013

    Article  CAS  Google Scholar 

  44. R.A. Vandermeer and H. Hu, On the Grain Growth Exponent of Pure Iron, Acta Metall. Mater., 1994, 42, p 3071–3075. https://doi.org/10.1016/0956-7151(94)90404-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the DST-FST grant for the SEM facility at the Institute of Nano-Science Initiative, Indian Institute of Science which has been used in the study. The use of XRD at the Institute x-ray facility is also acknowledged. The authors are thankful to Mr Sashidhara for his help in carrying out the tensile tests on the Instron machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Pramanik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, S., Suwas, S. Microstructure and Crystallographic Texture Evolution during Isothermal Annealing of Cold-Rolled Fe-6.8Al Low-Density Steel. J. of Materi Eng and Perform 31, 7449–7460 (2022). https://doi.org/10.1007/s11665-022-06792-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06792-7

Keywords

Navigation