Skip to main content
Log in

Gleeble-Assisted Investigation and Thermokinetics Simulation of α Phase Isothermal Precipitation during Short-Time Duplex Heat Treatment of Ti-6Al-4V Alloy

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The precipitation mechanism and kinetics of the secondary α phase during short-time duplex heat treatment of the Ti-6Al-4V alloy were investigated. The precipitation kinetics was determined by means of in situ isothermal electrical resistivity tests in a Gleeble thermomechanical testing machine in the temperature range of 600-700 °C. The results showed that the higher the aging temperature, the faster the secondary α phase precipitation, which obeys the Kolmogorov–Johnson–Mehl–Avrami (KJMA) equation with an Avrami parameter n = 1. The precipitation process was also investigated by simulation using the thermokinetic software MatCalc. Results of the simulation on MatCalc indicated that the secondary α phase nucleation ended at an earlier stage of the precipitation and that the latter is mainly controlled by the growth of secondary α phase precipitates. Increasing the aging temperature resulted in an increase of the precipitate’s size with an activation energy of Q = 62 kJ/mol for the process. Evolution of the simulated elements contents showed that only the vanadium concentration in the β phase changed significantly during the isothermal aging. Thus, the growth of the secondary α phase is governed by the vanadium diffusion into the β phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Banerjee and P. Mukhopadhyay, Phase Transformations: Examples from Titanium and Zirconium Alloys, Elsevier, Amsterdam, 2010.

    Google Scholar 

  2. M.J. Donachie, Titanium: A Technical Guide, 2nd ed., (ASM International, 2000).

  3. G. Lütjering and J.C. Williams, Titanium, Springer Science & Business Media, Berlin, 2007.

    Google Scholar 

  4. C. Leyens and M. Peters Eds., Titanium and Titanium Alloys, Wiley-vch, Amsterdam, 2003

    Google Scholar 

  5. T. Ahmed and H.J. Rack, Phase Transformations During Cooling in α + β titanium alloys, Mater. Sci. Eng. A, 1998, 243, p 206–211. https://doi.org/10.1016/s0921-5093(97)00802-2

    Article  Google Scholar 

  6. F.J. Gil, M.P. Ginebra, J.M. Manero, and J.A. Planell, Formation of α-Widmanstätten Structure: Effects of Grain Size and Cooling Rate on the Widmanstätten Morphologies and on the Mechanical Properties in Ti6Al4V Alloy, J. Alloys Compd., 2001, 329, p 142–152. https://doi.org/10.1016/S0925-8388(01)01571-7

    Article  CAS  Google Scholar 

  7. K. Abbasi, B. Beidokhti and S.A. Sajjadi, Microstructure and Mechanical Properties of Ti-6Al-4V Welds using α, Near-α and α+β Filler Alloys, Mater. Sci. Eng. A, 2017, 702, p 272–278. https://doi.org/10.1016/j.msea.2017.07.027

    Article  CAS  Google Scholar 

  8. J. Sieniawski, R. Filip, and W. Ziaja, The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys, Mater. Des., 1997, 18, p 361–363. https://doi.org/10.1016/S0261-3069(97)00087-3

    Article  CAS  Google Scholar 

  9. C. Cui, B.M. Hu, L. Zhao, and S. Liu, Titanium Alloy Production Technology, Market Prospects and Industry Development, Mater. Des., 2011, 32, p 1684–1691. https://doi.org/10.1016/j.matdes.2010.09.011

    Article  CAS  Google Scholar 

  10. H. Matsumoto, H. Yoneda, K. Sato, S. Kurosu, E. Maire, D. Fabregue, T.J. Konno, and A. Chiba, Room-Temperature Ductility of Ti-6Al-4V Alloy with α’ Martensite Microstructure, Mater. Sci. Eng. A, 2011, 528, p 1512–1520. https://doi.org/10.1016/j.msea.2010.10.070

    Article  CAS  Google Scholar 

  11. M.J.R. Barboza, E.A.C. Perez, M.M. Medeiros, D.A.P. Reis, M.C.A. Nono, F.P. Neto, and C.R.M. Silva, Creep Behavior of Ti-6Al-4V and a Comparison with Titanium Matrix Composites, Mater. Sci. Eng. A., 2006, 428, p 319–326. https://doi.org/10.1016/j.msea.2006.05.089

    Article  CAS  Google Scholar 

  12. Y.K. Kim, S.H. Park, J.H. Yu, B. AlMangour, and K.A. Lee, Improvement in the High-Temperature Creep Properties via Heat Treatment of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 715, p 33–40. https://doi.org/10.1016/j.msea.2017.12.085

    Article  CAS  Google Scholar 

  13. T. Mohandas, D. Banerjee, and V.V. Kutumbarao, Elevated Temperature Properties of Electron Beam Welds of an α + β Titanium Alloy, Mater. Sci. Eng. A, 1999, 269, p 217–224. https://doi.org/10.1016/s0921-5093(99)00172-0

    Article  Google Scholar 

  14. R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, The Effect of Microstructure on the Mechanical Properties of Two-Phase Titanium Alloys, J. Mater. Process. Technol, 2003, 133, p 84–89. https://doi.org/10.1016/S0924-0136(02)00248-0

    Article  CAS  Google Scholar 

  15. G. Dai, J. Niu, Y. Guo, Z. Sun, Z. Dan, H. Chang, and L. Zhou, Microstructure Evolution and Grain Refinement Behavior During Hot Deformation of Fe Micro-Alloyed Ti-6Al-4V, J. Mater. Res. Technol., 2021, 15, p 1881–1895. https://doi.org/10.1016/j.jmrt.2021.09.009

    Article  CAS  Google Scholar 

  16. J.O. Peters, G. Lütjering, M. Koren, H. Puschnik, and R.R. Boyer, Processing, Microstructure, and Properties of β-CEZ, Mater. Sci. Eng. A, 1996, 213, p 71–80. https://doi.org/10.1016/0921-5093(96)10225-2

    Article  Google Scholar 

  17. Z. Sun, S. Guo, and H. Yang, Nucleation and Growth Mechanism of α-Lamellae of Ti Alloy TA15 Cooling from an α + β Phase Field, Acta Mater., 2013, 61, p 2057–2064. https://doi.org/10.1016/j.actamat.2012.12.025

    Article  CAS  Google Scholar 

  18. J. Da Costa Teixeira, B. Appolaire, E. Aeby-Gautier, S. Denis, L. Héricher, Modeling of the Phase Transformations in Near-β Titanium Alloys During the Cooling After Forging. Comput. Mater. Sci. 42, 266–280 (2008). https://doi.org/10.1016/j.commatsci.2007.07.056

  19. H. Fujii, Continuous Cooling Transformation Characteristics of α + β Titanium Alloys, Nippon Steel Tech. Rep., 1994, 62, p 74–79.

    Google Scholar 

  20. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, and D.R. Barker, Microstructure Evolution During Alpha-Beta Heat Treatment of Ti-6Al-4V, Metall. Mater. Trans. A, 2003, 34, p 2377–2386. https://doi.org/10.1007/s11661-003-0300-0

    Article  Google Scholar 

  21. R. Trivedi, The Role of Interfacial Free Energy and Interface Kinetics During the Growth of Precipitate Plates and Needles, Metall. Trans., 1970, 1, p 921–927.

    Article  CAS  Google Scholar 

  22. W.P. Bosze and R. Trivedi, On the Kinetics Expression for the Growth of Precipitate Plates, Metall. Trans., 1974, 5, p 511–512. https://doi.org/10.1007/BF02644122

    Article  CAS  Google Scholar 

  23. M. Meng, X.G. Fan, H. Yang, L.G. Guo, M. Zhan, and P.F. Gao, Precipitation of Secondary Alpha in Competition with Epitaxial Growth of Primary Alpha in Two-Phase Titanium Alloys, J. Alloys Compd., 2017, 714, p 294–302. https://doi.org/10.1016/j.jallcom.2017.04.209

    Article  CAS  Google Scholar 

  24. I. Katzarov, S. Malinov, and W. Sha, Finite Element Modeling of the Morphology of β to α Phase Transformation in Ti-6Al-4V Alloy, Metall. Mater. Trans. A., 2002, 33, p 1027–1040. https://doi.org/10.1007/s11661-002-0204-4

    Article  Google Scholar 

  25. S. Malinov, P. Markovsky, W. Sha, and Z. Guo, Resistivity Study And Computer Modelling of the Isothermal Transformation Kinetics of Ti–6Al–4V and Ti–6Al–2Sn–4Zr–2Mo–0.08Si Alloys, J. Alloys Compd., 2001, 314, p 181–192. https://doi.org/10.1016/S0925-8388(01)01708-X

    Article  CAS  Google Scholar 

  26. S. Tanaka, T. Morita, K. Shinoda, Effects of Short-Time Duplex Heat Treatment on Microstructure and Fatigue Strength of Ti-6Al-4V alloy, in: 13th International Conference on Fracture, (2013), pp. 16–21.

  27. T. Morita, K. Hatsuoka, T. Iizuka, and K. Kawasaki, Strengthening of Ti-6Al-4V Alloy by Short-Time Duplex Heat Treatment, Mater. Trans., 2005, 46, p 1681–1686. https://doi.org/10.2320/matertrans.46.1681

    Article  CAS  Google Scholar 

  28. T. Morita, K. Asakura, and C. Kagaya, Effect of Combination Treatment on Wear Resistance and Strength of Ti-6Al-4V Alloy, Mater. Sci. Eng. A, 2014, 618, p 438–446. https://doi.org/10.1016/j.msea.2014.09.042

    Article  CAS  Google Scholar 

  29. R. Reda, A. Nofal, and A.H. Hussein, Effect of Single and Duplex Stage Heat Treatment on the Microstructure and Mechanical Properties of Cast Ti-6Al-4v Alloy, Metallogr. Microstruct. Anal., 2013, 2, p 388–393. https://doi.org/10.1007/s13632-013-0103-7

    Article  CAS  Google Scholar 

  30. A. Ajiz and J. Gunawarman, Affi, The Effects of Short-Time Solution Treatment and Short-Time Aging on Mechanical Properties of Ti-6Al-4V for Orthopaedic Applications, Int. J. Adv. Sci. Eng. Inf. Technol., 2015, 5, p 329–334. https://doi.org/10.18517/ijaseit.5.4.556

    Article  Google Scholar 

  31. T. Morita, S. Tanaka, and S. Ninomiya, Improvement in Fatigue Strength of Notched Ti-6Al-4V Alloy by Short-Time Heat Treatment, Mater. Sci. Eng. A, 2016, 669, p 127–133. https://doi.org/10.1016/j.msea.2016.05.071

    Article  CAS  Google Scholar 

  32. B. Sonderegger and E. Kozeschnik, Interfacial Energy of Diffuse Phase Boundaries in the Generalized Broken-Bond Approach, Metall. Mater. Trans. A, 2010, 41, p 3262–3269. https://doi.org/10.1007/s11661-010-0370-8

    Article  CAS  Google Scholar 

  33. J. Svoboda, F.D. Fischer, P. Fratzl, and E. Kozeschnik, Modelling of Kinetics in Multi-Component Multi-Phase Systems with Spherical Precipitates I: Theory, Mater. Sci. Eng. A, 2004, 385, p 166–174. https://doi.org/10.1016/j.msea.2004.06.018

    Article  CAS  Google Scholar 

  34. E. Laude, E. Gautier, P. Archambault, and S. Denis, Cinétique de Transformation des Alliages de Titane en Fonction du Traitement Thermomécanique. Etude Expérimentale et Calcul, Rev. Métallurgie., 1996, 93, p 1067–1078. https://doi.org/10.1051/metal/199693091067

    Article  CAS  Google Scholar 

  35. G. Gueret, B. Houssin, J. Fries, G. Cizeron, and P. Lacombe, Cinétique de durcissement de l’alliage de titane TA6V6E2. Analyse de l’évolution structurale au cours du revenu, J. Less Common Met., 1974, 38, p 31–51. https://doi.org/10.1016/0022-5088(74)90201-X

    Article  CAS  Google Scholar 

  36. S. Bein and J. Béchet, Phase Transformation Kinetics and Mechanisms in Titanium Alloys Ti-6.2.4.6, P-CEZ and Ti-10.2.3, J. Phys. IV, 1996, 6, p 99–108.

    CAS  Google Scholar 

  37. N. Kherrouba, Étude expérimentale et modélisation des cinétiques de transformation de phase dans un alliage de titane, PhD, Ecole Nationale Polytechnique d’Alger - Université Bretagne Sud, 2017. https://tel.archives-ouvertes.fr/tel-01710754.

  38. N. Kherrouba, M. Bouabdallah, R. Badji, D. Carron, and M. Amir, Beta to Alpha Transformation Kinetics and Microstructure of Ti-6Al-4V Alloy During Continuous Cooling, Mater. Chem. Phys., 2016, 181, p 462–469. https://doi.org/10.1016/j.matchemphys.2016.06.082

    Article  CAS  Google Scholar 

  39. J.W. Elmer, T.A. Palmer, S.S. Babu, and E.D. Specht, In Situ Observations of Lattice Expansion and Transformation Rates of α and β Phases in Ti-6Al-4V, Mater. Sci. Eng. A, 2005, 391, p 104–113. https://doi.org/10.1016/j.msea.2004.08.084

    Article  CAS  Google Scholar 

  40. J.B. Newkirk, Precipitation from Solid Solution, ASM Int. 104–107 (1959)

  41. J. Burke, The Kinetics of Phase Transformation in Metals, 1st ed. Pergamon Press, Oxford, 1965.

    Google Scholar 

  42. D.V. Gadeev and A.G. Illarionov, Determination of Beta-Transus Temperature of Two-Phase Titanium Alloys using differential Scanning Calorimetry, Solid State Phenom., 2018, 284, p 259–264. https://doi.org/10.4028/www.scientific.net/SSP.284.259

    Article  Google Scholar 

  43. J. Da Costa Teixeira, Etude expérimentale et modélisation des évolutions microstructurales au cours des traitements thermiques post forgeage dans l’alliage de titane Ti17, PhD, Institut National Polytechnique de Lorraine (2005). https://hal.archives-ouvertes.fr/tel-00325787.

  44. J.W. Christian, The Theory of Transformations in Metals and Alloys, 1st ed., Pergamon, (2002)

  45. N. Kherrouba, D. Carron, M. Bouabdallah, and R. Badji, Effect of Solution Treatment on the Microstructure, Micromechanical Properties, and Kinetic Parameters of the β → α Phase Transformation During Continuous Cooling of Ti-6Al-4V Titanium Alloy, J. Mater. Eng. Perform., 2019, 28, p 6921–6930. https://doi.org/10.1007/s11665-019-04404-5

    Article  CAS  Google Scholar 

  46. D.A. Porter, K.E. Easterling, and M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd ed. CRC Press Taylor and Francis, Boca Raton, 2009.

    Google Scholar 

  47. M. Tiryakioğlu, G. Ökten, and D. Hudak, Statistics for Estimating the Population Average of a Lifshitz-Slyozov- Wagner (LSW) Distribution, J. Mater. Sci., 2009, 44, p 5754–5759. https://doi.org/10.1007/s10853-009-3806-z

    Article  CAS  Google Scholar 

  48. S.L. Semiatin, B.C. Kirby, and G.A. Salishchev, Coarsening Behavior of an Alpha-Beta Titanium Alloy, Metall. Mater. Trans. A., 2004, 35, p 2809–2819.

    Article  Google Scholar 

  49. J. Xu, W. Zeng, Z. Jia, X. Sun, and Y. Zhao, Coarsening Kinetics and Morphological Evolution in a Two-Phase Titanium Alloy During Heat Treatment, J. Mater. Eng. Perform., 2016, 25, p 734–743. https://doi.org/10.1007/s11665-016-1951-5

    Article  CAS  Google Scholar 

  50. N. Stefansson and S.L. Semiatin, Mechanisms of Globularization of Ti-6Al-4V During Static Heat Treatment, Metall. Mater. Trans. A., 2003, 34, p 691–698.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Doctorate fund of the Ministry of Higher Education and Scientific Research of Algeria and was a part of a research project at the Research Center in Industrial Technologies (CRTI). Dr. E. Povoden-Karadeniz (Vienna University of Technology) is gratefully acknowledged for graciously making available the thermodynamic and diffusion databases of the Ti-Al-V system for the MatCalc simulation. The Gleeble 3500 machine of Université de Bretagne-Sud was co-funded by the European Regional Development Fund. The authors would like to thank Mr. W. Berckmans (Univ. Bretagne-Sud) for the efforts he has put into completing the Gleeble tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Kherrouba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kherrouba, N., Carron, D., Kouba, R. et al. Gleeble-Assisted Investigation and Thermokinetics Simulation of α Phase Isothermal Precipitation during Short-Time Duplex Heat Treatment of Ti-6Al-4V Alloy. J. of Materi Eng and Perform 31, 7517–7526 (2022). https://doi.org/10.1007/s11665-022-06775-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06775-8

Keywords

Navigation