Skip to main content
Log in

New Insights into the Nondestructive Evaluation of Thermally Aged at 475 °C Duplex Stainless Steels: A Comparative Study Between 2507 and 2101 Duplex Stainless Steels

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the oil, gas, and thermal power plant industries, it is highly desirable to assess the integrity of components manufactured with duplex stainless steel (DSS) while in service. One problem is the detection the 475 °C embrittlement; the phenomenon is composition and temperature dependent and is usually evaluated by some special laboratory techniques such as low-angle neutron scattering and Mössbauer spectroscopy. This constraint motivated the search for in-field methods as an alternative and literature research shows that nondestructive evaluation (NDE) methods are capable of measuring microstructural transformations in different metallic alloys; therefore, they are good candidates for in-field 475 °C embrittlement assessment. Although considerable evidence is reported, it is still not clear how the chemical composition affects the NDE variables. In this study, three NDE methods, namely ultrasonic shear wave birefringence (SWB), thermoelectric power (TEP) coefficient, and electric conductivity (EC) measurements, were conducted to track the effects of thermal aging at 475 °C in two different chemical composition DSS alloys. The experimental results were compared to Vickers microhardness measurements and scanning electron microscopy (SEM) and Electron Back-Scattering Diffraction (EBSD). EC and TEP techniques appear to be the most promising to track nondestructively the embrittlement phenomenon in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H.D. Solomon, and T. Devine Jr, Duplex Stainless Steels--A Tale of Two Phases, Duplex Stainless Steels. 693-756 (1982)

  2. T.A. DeBold, Duplex Stainless Steel—Microstructure and Properties, JOM, 1989, 41(3), p 12–15.

    Article  CAS  Google Scholar 

  3. J.O. Nilsson, Super Duplex Stainless Steels, Mater. Sci. Technol., 1992, 8(8), p 685–700.

    Article  CAS  Google Scholar 

  4. O.K. Chopra, and G. Ayrault, Aging Degradation of Cast Stainless Steel: Status and Program, Nucl. Eng. Des., 1985, 86(1), p 69–77.

    Article  CAS  Google Scholar 

  5. J. Olsson, and M. Snis, Duplex — A New Generation of Stainless Steels for Desalination Plants, Desalination, 2007, 205(1), p 104–113.

    Article  CAS  Google Scholar 

  6. P.J. Antony, R.K.S. Raman, R. Raman, and P. Kumar, Role of Microstructure on Corrosion of Duplex Stainless Steel in Presence of Bacterial Activity, Corros. Sci., 2010, 52(4), p 1404–1412.

    Article  CAS  Google Scholar 

  7. B. Deng, Z. Wang, Y. Jiang, T. Sun, J. Xu, and J. Li, Effect of Thermal Cycles on the Corrosion and Mechanical Properties of UNS S31803 Duplex Stainless Steel, Corros. Sci., 2009, 51(12), p 2969–2975.

    Article  CAS  Google Scholar 

  8. L. Zhang, Y. Jiang, B. Deng, W. Zhang, J. Xu, and J. Li, Effect of Aging on the Corrosion Resistance of 2101 Lean Duplex Stainless Steel, Mater. Charact., 2009, 60(12), p 1522–1528.

    Article  CAS  Google Scholar 

  9. K. Chandra, R. Singhal, V. Kain, and V.S. Raja, Low Temperature Embrittlement of Duplex Stainless Steel: Correlation Between Mechanical and Electrochemical Behavior, Mater. Sci. Eng. A, 2010, 527(16), p 3904–3912.

    Article  Google Scholar 

  10. Z.-H. Feng, J.-Y. Li, and Y.-D. Wang, The Microstructure Evolution of Lean Duplex Stainless Steel 2101, Steel Res. Int., 2017, 88(12), p 1700177.

    Article  Google Scholar 

  11. Z. Wei, J. Laizhu, H. Jincheng, and S. Hongmei, Effect of Ageing on Precipitation and Impact Energy of 2101 Economical Duplex Stainless Steel, Mater. Charact., 2009, 60(1), p 50–55.

    Article  Google Scholar 

  12. A. Bhattacharya, and P.M. Singh, Role of Microstructure on the Corrosion Susceptibility of UNS S32101 Duplex Stainless Steel, Corrosion, 2008, 64(6), p 532–540.

    Article  CAS  Google Scholar 

  13. B. Deng, Y. Jiang, J. Xu, T. Sun, J. Gao, L. Zhang, W. Zhang, and J. Li, Application of the Modified Electrochemical Potentiodynamic Reactivation Method to detect Susceptibility to Intergranular Corrosion of a Newly Developed Lean Duplex Stainless Steel LDX2101, Corros. Sci., 2010, 52(3), p 969–977.

    Article  CAS  Google Scholar 

  14. F. Zanotto, V. Grassi, M. Merlin, A. Balbo, and F. Zucchi, Effect of Brief Heat Treatments Performed Between 650 and 850°C on Corrosion Behaviour of a Lean Duplex Stainless Steel, Corros. Sci., 2015, 94, p 38–47.

    Article  CAS  Google Scholar 

  15. J. Gao, Y. Jiang, B. Deng, W. Zhang, C. Zhong, and J. Li, Investigation of Selective Corrosion Resistance of Aged Lean Duplex Stainless Steel 2101 by Non-Destructive Electrochemical Techniques, Electrochim. Acta, 2009, 54(24), p 5830–5835.

    Article  CAS  Google Scholar 

  16. S.S.M. Tavares, V.F. Terra, J.M. Pardal, and M.P.C. Fonseca, Influence of the Microstructure on the Toughness of a Duplex Stainless Steel UNS S31803, J. Mater. Sci., 2005, 40(1), p 145–154.

    Article  CAS  Google Scholar 

  17. S. Kawaguchi, N. Sakamoto, G. Takano, F. Matsuda, Y. Kikuchi, and L.U. Mráz, Microstructural Changes and Fracture Behavior of CF8M Duplex Stainless Steels After Long-Term Aging, Nucl. Eng. Design, 1997, 174(3), p 273–285.

    Article  CAS  Google Scholar 

  18. M.V. Biezma, U. Martin, P. Linhardt, J. Ress, C. Rodríguez, and D.M. Bastidas, Non-Destructive Techniques for the Detection of Sigma Phase in Duplex Stainless Steel: A Comprehensive Review, Eng. Fail. Anal., 2021, 122, p 105227.

    Article  CAS  Google Scholar 

  19. P. Bassani, M. Breda, K. Brunelli, I. Mészáros, F. Passaretti, M. Zanellato, and I. Calliari, Characterization of a Cold-Rolled 2101 Lean Duplex Stainless Steel, Microsc. Microanal., 2013, 19(4), p 988–995.

    Article  CAS  Google Scholar 

  20. Y. Yi, and T. Shoji, Detection and Evaluation of Material Degradation of Thermally Aged Duplex Stainless Steels: Electrochemical Polarization Test and AFM Surface Analysis, J. Nucl. Mater., 1996, 231(1–2), p 20–28.

    Article  CAS  Google Scholar 

  21. F. Iacoviello, F. Casari, and S. Gialanella, Effect of “475 °C Embrittlement” on Duplex Stainless Steels Localized Corrosion Resistance, Corros. Sci., 2005, 47, p 909–922.

    Article  CAS  Google Scholar 

  22. M. Hättestrand, P. Larsson, G. Chai, J.-O. Nilsson, and J. Odqvist, Study of Decomposition of Ferrite in a Duplex Stainless Steel Cold Worked and Aged at 450–500°C, Mater. Sci. Eng. A, 2009, 499(1), p 489–492.

    Article  Google Scholar 

  23. S. Li, Y. Wang, X. Wang, and F. Xue, G-Phase Precipitation in Duplex Stainless Steels After Long-Term Thermal Aging: A High-Resolution Transmission Electron Microscopy Study, J. Nucl. Mater., 2014, 452(1), p 382–388.

    Article  CAS  Google Scholar 

  24. F. Danoix, and P. Auger, Atom Probe Studies of the Fe–Cr System and Stainless Steels Aged at Intermediate Temperature: A Review, Mater. Charact., 2000, 44(1), p 177–201.

    Article  CAS  Google Scholar 

  25. H. Solomon, and L.M. Levinson, Mössbauer Effect Study of ‘475 C Embrittlement’of Duplex and Ferritic Stainless Steels, Acta Metall., 1978, 26(3), p 429–442.

    Article  CAS  Google Scholar 

  26. K. Chandra, R. Singhal, V. Kain, and V. Raja, Low Temperature Embrittlement of Duplex Stainless Steel: Correlation Between Mechanical and Electrochemical Behavior, Mater. Sci. Eng. A, 2010, 527(16–17), p 3904–3912.

    Article  Google Scholar 

  27. D. Chandra, and L. Schwartz, Mössbauer Effect Study of the 475‡ C Decomposition of Fe-Cr, Metall. Trans., 1971, 2(2), p 511–519.

    Article  CAS  Google Scholar 

  28. J.K. Sahu, U. Krupp, R.N. Ghosh, and H.J. Christ, Effect of 475°C Embrittlement on the Mechanical Properties of Duplex Stainless Steel, Mater. Sci. Eng. A, 2009, 508(1), p 1–14.

    Article  Google Scholar 

  29. J.D. Tucker, M.K. Miller, and G.A. Young, Assessment of Thermal Embrittlement in Duplex Stainless Steels 2003 and 2205 for Nuclear Power Applications, Acta Mater., 2015, 87, p 15–24.

    Article  CAS  Google Scholar 

  30. Y. Li, S.-X. Li, and T.-Y. Zhang, Effect of Dislocations on Spinodal Decomposition in Fe–Cr Alloys, J. Nucl. Mater., 2009, 395, p 120–130.

    Article  CAS  Google Scholar 

  31. T. Suzudo, H. Takamizawa, Y. Nishiyama, A. Caro, T. Toyama, and Y. Nagai, Atomistic Modeling of Hardening in Spinodally-Decomposed Fe–Cr Binary Alloys, J. Nucl. Mater., 2020, 540, p 152306.

    Article  CAS  Google Scholar 

  32. R.H. Bergman, and R.A. Shahbender, Effect of Statically Applied Stresses on the Velocity of Propagation of Ultrasonic Waves, J. Appl. Phys., 1958, 29(12), p 1736–1738.

    Article  Google Scholar 

  33. S. Dixon, M.P. Fletcher, and G. Rowlands, The Accuracy of Acoustic Birefringence Shear Wave Measurements in Sheet Metal, J. Appl. Phys., 2008, 104(11), p 114901.

    Article  Google Scholar 

  34. A. Ruiz, N. Ortiz, H. Carreón, and C. Rubio, Utilization of Ultrasonic Measurements for Determining the Variations in Microstructure of Thermally Degraded 2205 Duplex Stainless Steel, J. Nondestr. Eval., 2009, 28(3), p 131.

    Article  Google Scholar 

  35. E. Schneider, Ultrasonic Birefringence Effect—Its Application for Materials Characterisations, Opt. Lasers Eng., 1995, 22(4), p 305–323.

    Article  Google Scholar 

  36. W. Morgner, Introduction to Thermoelectric Nondestructive Testing, Mater. Eval., 1991, 49, p 1081–1088.

    Google Scholar 

  37. P. Nagy, Non-Destructive Methods for Materials’ State Awareness Monitoring, Insight-Non-Destr. Test. Cond. Monitor., 2010, 52(2), p 61–71.

    Article  CAS  Google Scholar 

  38. H. Carreon, A. Ruiz and, B. Santoveña, Study of Aging Effects in a Ti-6AL-4V Alloy with Widmanstätten and Equiaxed Microstructures by Non-Destructive Means, AIP Conf. Proc., 2014, 1581(1), p 739–745.

    Article  CAS  Google Scholar 

  39. N.O. Lara, A. Ruiz, C. Rubio, R.R. Ambriz, and A. Medina, Nondestructive Assessing of the Aging Effects in 2205 Duplex Stainless Steel Using Thermoelectric Power, NDT E Int., 2011, 44(5), p 463–468.

    Article  CAS  Google Scholar 

  40. Y. Kawaguchi, and S. Yamanaka, Applications of Thermoelectric Power Measurement to Deterioration Diagnosis of Nuclear Material and its Principle, J. Nondestr. Eval., 2004, 23(2), p 65–76.

    Article  Google Scholar 

  41. G. Gutiérrez-Vargas, A. Ruiz, J.-Y. Kim, V.H. López-Morelos, and R.R. Ambriz, Evaluation of Thermal Embrittlement in 2507 Super Duplex Stainless Steel Using Thermoelectric Power, Nucl. Eng. Technol., 2019, 51(7), p 1816–1821.

    Article  Google Scholar 

  42. D. Michael, R. Waechter, and R. Collins, The Measurement of Surface Cracks in Metals by Using ac Electric Fields, Proc. Royal Soc. London A Math. Phys. Sci., 1982, 381(1780), p 139–157.

    Google Scholar 

  43. E. Madhi, and P.B. Nagy, Sensitivity Analysis of a Directional Potential Drop Sensor for Creep Monitoring, NDT E Int., 2011, 44(8), p 708–717.

    Article  CAS  Google Scholar 

  44. J. Corcoran, P. Nagy and P. Cawley, Monitoring Creep Damage at a Weld Using a Potential Drop Technique, Int. J. Press. Vessels Pip., 2017, 153, p 15–25.

    Article  Google Scholar 

  45. J.R. Bowler, Y. Huang, H. Sun, J. Brown, and N. Bowler, Alternating Current Potential-Drop Measurement of the Depth of Case Hardening in Steel Rods, Measur. Sci. Technol., 2008, 19(7), p 075204.

    Article  Google Scholar 

  46. S. Prajapati, P.B. Nagy, and P. Cawley, Potential Drop Detection of Creep Damage in the Vicinity of Welds, NDT E Int., 2012, 47, p 56–65.

    Article  Google Scholar 

  47. A. Isalgué, M. Anglada, J. Rodríguez-Carvajal, and A. De Geyer, Study of the Spinodal Decomposition of an Fe-28Cr-2Mo-4Ni-Nb Alloy by Small-Angle Neutron Scattering, J. Mater. Sci., 1990, 25(12), p 4977–4980.

    Article  Google Scholar 

  48. G. Gutiérrez-Vargas, A. Ruiz, V.H. López-Morelos, J.-Y. Kim, J. González-Sánchez, and A. Medina-Flores, Evaluation of 475 °C Embrittlement in UNS S32750 Super Duplex Stainless Steel Using Four-Point Electric Conductivity Measurements, Nucl. Eng. Technol., 2021, 53(9), p 2982–2989.

    Article  Google Scholar 

  49. J. Hu, and P.B. Nagy, On the thermoelectric effect of interface imperfections, Review of progress in quantitative nondestructive evaluation: volume 18A–18B. D.O. Thompson, D.E. Chimenti Ed., Springer, US, Boston, MA, 1999, p 1487–1494

    Chapter  Google Scholar 

  50. R. Silva, L.F.S. Baroni, M.B.R. Silva, C.R.M. Afonso, S.E. Kuri and C.A.D. Rovere, Effect of Thermal Aging at 475°C on the Properties of Lean Duplex Stainless Steel 2101, Mater. Charact., 2016, 114, p 211–217.

    Article  CAS  Google Scholar 

  51. S.S.M. Tavares, M.R. da Silva, and J.M. Neto, Magnetic Property Changes During Embrittlement of a Duplex Stainless Steel, J. Alloy. Compd., 2000, 313(1), p 168–173.

    Article  CAS  Google Scholar 

  52. C. Ouml, M. Örnek, T. Burke, J. Hashimoto, D. Lim, and C. Engelberg, Örnek, 475°C Embrittlement of Duplex Stainless Steel—A Comprehensive Microstructure Characterization Study, Mater. Perform. Charact., 2017, 6(3), p 409–436.

    Google Scholar 

  53. M.Z. Ahmed, and P.P. Bhattacharjee, Evolution of Microstructure and Texture during Isothermal Annealing of a Heavily Warm-rolled Duplex Steel, ISIJ Int., 2014, 54(12), p 2844–2853.

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed at the Universidad Michoacana de San Nicolás de Hidalgo. The authors want to thanks CONACYT for providing the scholarship to Jorge Rodríguez García during his master studies. Also we want to thank CIC-UMSNH and Subsecretaria de Educación Superior de la SEP (Fortalecimiento de Cuerpos Academicos) for the financial support. Finally, the authors are thankful to Professor Peter B. Nagy (University of Cincinnati) for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ruiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-García, J., Ruiz, A. New Insights into the Nondestructive Evaluation of Thermally Aged at 475 °C Duplex Stainless Steels: A Comparative Study Between 2507 and 2101 Duplex Stainless Steels. J. of Materi Eng and Perform 31, 7609–7623 (2022). https://doi.org/10.1007/s11665-022-06746-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06746-z

Keywords

Navigation