Skip to main content
Log in

Study on the Lubrication Mechanism of Diamond-Like Carbon Coating in Two Formulated Lubricants with Two Viscosity Grades

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, DLC coating was prepared on GCr15 bearing steel by magnetron sputtering method. The tribological behavior of GCr15 steel and DLC coating was studied at the speed range of 0.4 to 4.0 cm/s under two viscosity grades fully formulated lubricating oils (0W-20, 0W-40). The results show that viscosity of oil and sliding speed have a great effect on the DLC coating tribological properties. Compared to GCr15 steel at the speed of 0.4cm/s, there was a 41.67% reduction in the friction coefficient and 86.35% reduction in the wear rate of DLC coating in 0W-20 oil. The anti-friction and anti-wear advantages of DLC coating gradually disappear in low viscosity lubricating oil with the increase in sliding speed. The oil chain length and slip characteristics on DLC coating are two main factors that affect lubrication performance. The low viscosity lubricating oil, 0W-20, requires less energy to move and penetrate the lubricant molecules on DLC coating. This study will provide an experimental and theoretical basis for the application of low viscosity lubricating oil on DLC coating in the internal combustion engine industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Holmberg, P. Andersson, and A. Erdemir, Global Energy Consumption due to Friction in Passenger Cars, Tribol. Int., 2012, 47, p 221–234.

    Article  Google Scholar 

  2. McGrawHill, Internal Combustion Engine Fundamentals, Internal Combustion Engine Fundamentals, 1988

  3. K. Holmberg, P. Andersson, N.-O. Nylund, K. Mäkelä, and A. Erdemir, Global Energy Consumption due to Friction in Trucks and Buses, Tribol. Int., 2014, 78, p 94–114.

    Article  Google Scholar 

  4. K. Holmberg and A. Erdemir, Influence of Tribology on Global Energy Consumption, Costs and Emissions, Friction, 2017, 5(3), p 263–284.

    Article  CAS  Google Scholar 

  5. H. Ronkainen and K. Holmber, Tribology of Diamond-like Carbon Films Fundamentals and Applications, 2008

  6. K. Bewilogua and D. Hofmann, History of Diamond-Like Carbon Films—From First Experiments to Worldwide Applications, Surf. Coat. Technol., 2014, 242, p 214–225.

    Article  CAS  Google Scholar 

  7. B. Podgornik and J. Vižintin, Tribological Reactions Between Oil Additives and DLC Coatings for Automotive Applications, Surf. Coat. Technol., 2005, 200(5–6), p 1982–1989.

    Article  CAS  Google Scholar 

  8. G. Vaitkunaite, C. Espejo, C. Wang, B. Thiébaut, C. Charrin, A. Neville, and A. Morina, MoS2 Tribofilm Distribution from Low Viscosity Lubricants and its Effect on Friction, Tribol. Int., 2020, 151, p 106531.

    Article  CAS  Google Scholar 

  9. B. Vengudusamy, J.H. Green, G.D. Lamb, and H.A. Spikes, Behaviour of MoDTC in DLC/DLC and DLC/Steel Contacts, Tribol. Int., 2012, 54, p 68–76.

    Article  CAS  Google Scholar 

  10. W. Yue, C. Liu, Z. Fu, C. Wang, H. Huang, and J. Liu, Synergistic Effects Between Sulfurized W-DLC Coating and MoDTC Lubricating Additive for Improvement of Tribological Performance, Tribol. Int., 2013, 62, p 117–123.

    Article  CAS  Google Scholar 

  11. J.M. Martin, C. Grossiord, T.L. Mogne, and J.J.W. Igarashi, Transfer Films and Friction under Boundary Lubrication, Wear, 2000, 245(1), p 107–115.

    Article  CAS  Google Scholar 

  12. M. Ueda, A. Kadiric, and H. Spikes, Wear of Hydrogenated DLC in MoDTC-Containing Oils, Wear, 2021, 474–475, p 203869.

    Article  Google Scholar 

  13. T. Haque, A. Morina, A. Neville, R. Kapadia, and S. Arrowsmith, Effect of Oil Additives on the Durability of Hydrogenated DLC Coating under Boundary Lubrication Conditions, Wear, 2009, 266(1–2), p 147–157.

    Article  CAS  Google Scholar 

  14. Z. Cao, Y. Xia, L. Liu, and X. Feng, Study on the Conductive and Tribological Properties of Copper Sliding Electrical Contacts Lubricated by Ionic Liquids, Tribol. Int., 2019, 130, p 27–35.

    Article  CAS  Google Scholar 

  15. M. Azzi, M. Paquette, J.A. Szpunar, J.E. Klemberg-Sapieha, and L. Martinu, Tribocorrosion Behaviour of DLC-Coated 316L Stainless Steel, Wear, 2009, 267(5–8), p 860–866.

    Article  CAS  Google Scholar 

  16. X. Sui, J. Liu, S. Zhang, J. Yang, and J. Hao, Microstructure, Mechanical and Tribological Characterization of CrN/DLC/Cr-DLC Multilayer Coating with Improved Adhesive Wear Resistance, Appl. Surf. Sci., 2018, 439, p 24–32.

    Article  CAS  Google Scholar 

  17. M. Ebrahimi, F. Mahboubi, and M.R. Naimi-Jamal, Wear Behavior of DLC Film on Plasma Nitrocarburized AISI 4140 Steel by Pulsed DC PACVD: Effect of Nitrocarburizing Temperature, Diam. Relat. Mater., 2015, 52, p 32–37.

    Article  CAS  Google Scholar 

  18. M. Yan, X. Wang, S. Zhang, S. Zhang, X. Sui, W. Li, J. Hao, and W. Liu, Friction and Wear Properties of GLC and DLC Coatings under Ionic Liquid Lubrication, Tribol. Int., 2020, 143, p 106067.

    Article  CAS  Google Scholar 

  19. F.D. Duminica, R. Belchi, L. Libralesso, and D. Mercier, Investigation of Cr(N)/DLC Multilayer Coatings Elaborated by PVD for High Wear Resistance and Low Friction Applications, Surf. Coat. Technol., 2018, 337, p 396–403.

    Article  CAS  Google Scholar 

  20. G.M. Pharr and W.C.J.M.B. Oliver, Measurement of Thin Film Mechanical Properties using Nanoindentation, MRS Bull., 1992, 17(07), p 28–33.

    Article  Google Scholar 

  21. W.C. Oliver and G.M.J.J.O.M.R. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20.

    Article  CAS  Google Scholar 

  22. P. Zhang, S.X. Li, and Z.F.J.M.S. Zhang, General Relationship Between Strength and Hardness, Mater. Sci. Eng., 2011, 529, p 62–73.

    Article  CAS  Google Scholar 

  23. D.J.M.T. Tabor, The Hardness of Metals, 1951

  24. C. Hua, J. Guo, J. Liu, X. Yan, Y. Zhao, L. Chen, J. Wei, L. Hei, and C. Li, Influence of Diamond Surface Chemical States on the Adhesion Strength Between Y2O3 Film and Diamond Substrate, Mater. Des., 2016, 105, p 81–88.

    Article  CAS  Google Scholar 

  25. Y. Ye, Y. Wang, H. Chen, J. Li, Y. Yao, and C. Wang, Doping Carbon to Improve the Tribological Performance of CrN Coatings in Seawater, Tribol. Int., 2015, 90, p 362–371.

    Article  CAS  Google Scholar 

  26. J. Yao, L. Lv, Y. He, and D. Wang, Size Effect of (Al2O3–Y2O3)/YSZ Micro-Laminated Coating on High-Temperature Oxidation Resistance, Appl. Surf. Sci., 2013, 279, p 85–91.

    Article  CAS  Google Scholar 

  27. A.J. Gant, M.G. Gee, and L.P. Orkney, The Wear and Friction Behaviour of Engineering Coatings in Ambient Air and Dry Nitrogen, Wear, 2011, 271(9–10), p 2164–2175.

    Article  CAS  Google Scholar 

  28. S. Neuville, Quantum Electronic Mechanisms of Atomic Rearrangements during Growth of Hard Carbon Films, Surf. Coat. Technol., 2011, 206(4), p 703–726.

    Article  CAS  Google Scholar 

  29. B. Vengudusamy, R.A. Mufti, G.D. Lamb, J.H. Green, and H.A. Spikes, Friction Properties of DLC/DLC Contacts in Base Oil, Tribol. Int., 2011, 44(7–8), p 922–932.

    Article  CAS  Google Scholar 

  30. K. Topolovec-Miklozic, F. Lockwood, and H. Spikes, Behaviour of Boundary Lubricating Additives on DLC Coatings, Wear, 2008, 265(11–12), p 1893–1901.

    Article  CAS  Google Scholar 

  31. H.S. Zhang, J.L. Endrino, and A. Anders, Comparative Surface and Nano-Tribological Characteristics of Nanocomposite Diamond-Like Carbon Thin Films Doped by Silver, Appl. Surf. Sci., 2008, 255(5), p 2551–2556.

    Article  CAS  Google Scholar 

  32. I. Sugimoto, F. Honda, and K. Inoue, Analysis of Wear Behavior and Graphitization of Hydrogenated DLC under Boundary Lubricant with MoDTC, Wear, 2013, 305(1–2), p 124–128.

    Article  CAS  Google Scholar 

  33. S. Kosarieh, A. Morina, E. Lainé, J. Flemming, and A. Neville, The Effect of MoDTC-type Friction Modifier on the Wear Performance of a Hydrogenated DLC Coating, Wear, 2013, 302(1–2), p 890–898.

    Article  CAS  Google Scholar 

  34. H. Okubo, C. Tadokoro, T. Sumi, N. Tanaka, and S. Sasaki, Wear Acceleration Mechanism of Diamond-like Carbon (DLC) Films Lubricated with MoDTC Solution: Roles of Tribofilm Formation and Structural Transformation in Wear Acceleration of DLC Films Lubricated with MoDTC Solution, Tribol. Int., 2019, 133, p 271–287.

    Article  CAS  Google Scholar 

  35. I. Velkavrh and M. Kalin, Comparison of the Effects of the Lubricant-Molecule Chain Length and the Viscosity on the Friction and Wear of Diamond-Like-Carbon Coatings and Steel, Tribol. Int., 2012, 50, p 57–65.

    Article  CAS  Google Scholar 

  36. M. Kalin, J. Vižintin, J. Barriga, K. Vercammen, K.V. Acker, and A. Arnšek, The Effect of Doping Elements and Oil Additives on the Tribological Performance of Boundary-Lubricated DLC/DLC Contacts, Tribol. Lett., 2004, 17(4), p 679–688.

    Article  Google Scholar 

  37. M. Kalin and J. Vižintin, Real Contact Temperatures as the Criteria for the Reactivity of Diamond-Like-Carbon Coatings with Oil Additives, Thin Solid Films, 2010, 518(8), p 2029–2036.

    Article  CAS  Google Scholar 

  38. O.N. Shebanova and P.J.J.O.R.S. Lazor, Raman Study of Magnetite (Fe3O4): Laser-Induced Thermal Effects and Oxidation, J. Raman Spectrosc., 2003, 34(11), p 845–852.

    Article  CAS  Google Scholar 

  39. A. Erdemir, O.L. Eryilmaz, I.B. Nilufer, G.R.J.S. Fenske, and C. Technology, Synthesis of Superlow-Friction Carbon Films from Highly Hydrogenated Methane Plasmas, Surf. Coat. Technol., 2000, 133, p 448–454.

    Article  Google Scholar 

  40. C. Donnet, J. Fontaine, A. Grill, and T.J.T.L. Le Mogne, The Role of Hydrogen on the Friction Mechanism of Diamond-Like Carbon Films, Tribol. Lett., 2001, 9(3), p 137–142.

    Article  Google Scholar 

  41. A. Erdemir, Superlubricity in Diamondlike Carbon Films, 2007

  42. J. Wang, J. Ma, W. Huang, L. Wang, H. He, and C. Liu, The Investigation of the Structures and Tribological Properties of F-DLC Coatings Deposited on Ti-6Al-4V Alloys, Surf. Coat. Technol., 2017, 316, p 22–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support of Open Fund of the Yellow River Water Environment Key Laboratory of Gansu Province, China (Grant No. 221162).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Xu or Dongshan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Xu, L., Li, D. et al. Study on the Lubrication Mechanism of Diamond-Like Carbon Coating in Two Formulated Lubricants with Two Viscosity Grades. J. of Materi Eng and Perform 31, 6711–6721 (2022). https://doi.org/10.1007/s11665-022-06708-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06708-5

Keywords

Navigation