Skip to main content

Advertisement

Log in

Effect of Hydrogen Charging on the Corrosion Behavior of E690 Steel in 3.5 wt.% NaCl Solution

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of hydrogen charging on the corrosion behavior of E690 steel in 3.5 wt.% NaCl solution was investigated. The corrosion behaviors of the charged and uncharged steel were characterized using scanning electron microscopy, x-ray diffraction, Raman spectroscopy and x-ray photoelectron spectroscopy. The results showed that hydrogen charging promoted the precipitation of corrosion products on the surface of E690 steel, with the corrosion products mainly consisting of α-Fe2O3, α-FeOOH and γ-FeOOH. The relative content of α-FeOOH reached maximum when the hydrogen charging current density was 20 mA/cm2, and two different corrosion product layers were formed on the surface. And the hydrogen charged current density at 20 and 50 mA/cm2, the potentiodynamic polarization curves also displayed passivation regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q.K. Lu, L.W. Wang, J.C. Xin, H.Y. Tian, X. Wang and Z.Y. Cui, Corrosion Evolution and Stress Corrosion Cracking of E690 Steel for Marine Construction in Artificial Seawater Under Potentiostatic Anodic Polarization, Constr. Build. Mater., 2020, 238, p 117763.

    Article  CAS  Google Scholar 

  2. D.P. Wang, H.T. Zhang, P.Y. Guo, B.A. Sun and Y.X. Wang, Nanoscale Periodic Distribution of Energy Dissipation at the Shear Band Plane in a Zr-Based Metallic Glass, Scripta Mater., 2021, 197, p 113784.

    Article  CAS  Google Scholar 

  3. D.P. Wang, J.W. Shen, Z. Chen, F.G. Chen, P.Y. Guo, Y.X. Geng and Y.X. Wang, Relationship of Corrosion Behavior Between Single-Phase Equiatomic CoCrNi, CoCrNiFe, CoCrNiFeMn Alloys and Their Constituents in NaCl Solution, Acta Metall. Sin. Engl. Lett., 2021. https://doi.org/10.1007/s40195-021-01281-7.

    Article  Google Scholar 

  4. L.M. Zhang, Z.X. Li, J.X. Hu, A.L. Ma, S. Zhang, E.F. Daniel, A.J. Umoh, H.X. Hu and Y.G. Zheng, Understanding the Roles of Deformation-Induced Martensite of 304 Stainless Steel in Different Stages of Cavitation Erosion, Tribol. Int., 2021, 155, p 106752.

    Article  CAS  Google Scholar 

  5. Z.X. Chen, H.X. Hu, X.M. Guo and Y.G. Zheng, Effect of Groove Depth on the Slurry Erosion of V-Shaped Grooved Surfaces, Wear, 2022, 488–489, p 204133.

    Article  CAS  Google Scholar 

  6. Y.X. Qiao, Y. Zhou, S.J. Chen and Q.N. Song, Effect of Bobbin Tool Friction Stir Welding on Microstructureand Corrosion Behavior of 6061-t6 Aluminumalloy Joint in 3.5% NaCl Solution, Acta Metall. Sin, 2016, 52, p 1395–1402.

    CAS  Google Scholar 

  7. Y. Pan, Z.Y. Liu, Y.D. Zhang, X.G. Li and C.W. Du, Effect of AC Current Density on the Stress Corrosion Cracking Behavior and Mechanism of E690 High-Strength Steel in Simulated Seawater, J. Mater. Eng. Perform., 2019, 28, p 6931–6941.

    Article  CAS  Google Scholar 

  8. T.L. Zhao, Z.Y. Liu, C.W. Du, C.D. Dai, X.G. Li and B.W. Zhang, Corrosion Fatigue Crack Initiation and Initial Propagation Mechanism of E690 Steel in Simulated Seawater, Mater. Sci. Eng. A, 2017, 708, p 181–192.

    Article  CAS  Google Scholar 

  9. H.C. Ma, Z.Y. Liu, C.W. Du, H.R. Wang, C.Y. Li and X.G. Li, Effect of Cathodic Potentials on the SCC Behavior of E690 Steel in Simulated Seawater, Mater. Sci. Eng. A, 2015, 642, p 22–31.

    Article  CAS  Google Scholar 

  10. H.C. Ma, Y. Fan, Z.Y. Liu, C.W. Du and X.G. Li, Effect of Pre-Strain on the Electrochemical and Stresscorrosion Cracking Behavior of E690 Steel in Simulated Marine Atmosphere, Ocean Eng., 2019, 182, p 188–195.

    Article  Google Scholar 

  11. H.C. Ma, L.H. Chen, J.B. Zhao, Y.H. Huang and X.G. Li, Effect of Prior Austenite Grain Boundaries on Corrosion Fatigue Behaviors of E690 High Strength Low Alloy Steel in Simulated Marine Atmosphere, Mater. Sci. Eng. A, 2020, 773, p 138884.

    Article  CAS  Google Scholar 

  12. Z.F. Li, F.X. Gan and X.H. Mao, A Study on Cathodic Protection Against Crevice Corrosionin Dilute NaCl Solution, Corros. Sci., 2002, 44, p 689–701.

    Article  CAS  Google Scholar 

  13. Y.L. Huang, X.J. Liu, Q.C. Zhang, Y. Xu, H.J. Kunte and R. De Marco, Hydrogen Release from Carbon Steel in Chloride Solution Under Anodic Polarization, Int. J. Hydrogen Energ., 2020, 45, p 3307–3315.

    Article  CAS  Google Scholar 

  14. Y.E. Guo, P. Liang, Y.H. Shi, Y. Zhao, F. Li and L. Jin, Effect of Hydrogen on Corrosion Behavior of S32750 Super Duplex Stainless Steel, Int. J. Electrochem. Sci., 2018, 13, p 10302–10313.

    Article  CAS  Google Scholar 

  15. Q. Yan, Q. Yin, J. Cui, X.Y. Wang, Y.X. Qiao and Hl. Zhou, Effect of Temperature on Corrosion Behavior of E690 Steel in 3.5 wt % NaCl Solution, Mater. Res. Express., 2021, 8, p 016528.

    Article  CAS  Google Scholar 

  16. T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun and X.G. Li, Effects of Cathodic Polarization on Corrosion Fatigue Life of E690 Steel in Simulated Seawater, Int. J. Fatigue, 2018, 110, p 105–114.

    Article  CAS  Google Scholar 

  17. B.Y. Yuan, R. Liu, S.X. Zhao, L. Li and C. Wang, SECM Investigation of the Effects of Hydrogen on the Pitting Processes of X70 Carbon Steel in Simulated Soil Solution, Int. J. Electrochem. Sci., 2018, 13, p 3396–3406.

    Article  CAS  Google Scholar 

  18. Y.M. Zeng, J.L. Luo and P.R. Norton, Initiation and Propagation of Pitting and Crevice Corrosion of Hydrogen-Containing Passive Films on X70 Micro-Alloyed Steel, Electrochim. Acta, 2004, 49, p 703–714.

    Article  CAS  Google Scholar 

  19. C.D. Beachem, A New Model for Hydrogen-Assisted Cracking (Hydrogen “Embrittlement”), Metall. Trans., 1972, 3, p 437–451.

    CAS  Google Scholar 

  20. A. Zieliński, E. Łunarska, P. Michalak and W. Serbiński, Strength Deterioration of 26H2MF and 34HNM Steels Used in Ship Engines: Hydrogen Factor, Mater. Sci., 2004, 40, p 822–830.

    Article  CAS  Google Scholar 

  21. Y.M. Zeng, J.L. Luo and P.R. Norton, A Study of Semiconducting Properties of Hydrogen Containing Passive Films, Thin Solid Films, 2004, 460, p 116–124.

    Article  CAS  Google Scholar 

  22. A. Juan and R. Hoffmann, Hydrogen on the Fe(110) Surface and Near Bulk bcc Fe Vacancies a Comparative Bonding Study, Surf. Sci., 1999, 421, p 1–16.

    Article  CAS  Google Scholar 

  23. S. Thomas, N. Ott, R.F. Schaller, J.A. Yuwono, P. Volovitch, G. Sundararajan, N.V. Medhekar, K. Ogle, J.R. Scully and N. Birbilis, The Effect of Absorbed Hydrogen on the Dissolution of Steel, Heliyon, 2016, 2, p e00209.

    Article  Google Scholar 

  24. L.J. Qiao and J.L. Luo, Hydrogen-Facilitated Anodic Dissolution of Austenitic Stainless Steels, Corrosion, 1998, 54, p 281–288.

    Article  CAS  Google Scholar 

  25. Y.M. Zeng, J.L. Luo and P.R. Nortonb, New Interpretation of the Effect of Hydrogen on the Ion Distributions and Structure of Passive Films on Microalloyed Steel, J. Electrochem. Soc., 2004, 151, p B291–B298.

    Article  CAS  Google Scholar 

  26. S. Modiano, J.A.V. Carreño, C.S. Fugivara, R.M. Torresi, V. Vivier, A.V. Benedetti and O.R. Mattos, Changes on Iron Electrode Surface During Hydrogen Permeation in Borate Buffer Solution, Electrochim. Acta, 2008, 53, p 3670–3679.

    Article  CAS  Google Scholar 

  27. R.N. Lyerl and H.W. Pickering, Mechanism and Kinetics of Electrochemical Hydrogen Entry and Degradation of Metallic Systems, Annu. Rev. Mater. Sci., 1990, 20, p 299–338.

    Article  Google Scholar 

  28. A. Ejaz, Q. Xiao, J.J. Chen, G.D. Han and Z.P. Lu, Effects of Hydrogen on Corrosion Products Formed on Ironin Chloride Solutions, ECS Trans., 2016, 72, p 31–40.

    Article  CAS  Google Scholar 

  29. M.C. Li and Y.F. Cheng, Mechanistic Investigation of Hydrogen-Enhanced Anodic Dissolution of X-70 Pipe Steel and its Implication on Near-Neutral pH SCC of Pipelines, Electrochim. Acta, 2007, 52, p 8111–8117.

    Article  CAS  Google Scholar 

  30. Y.X. Qiao, D.K. Xu, S. Wang, Y.J. Ma, J. Chen, Y.X. Wang and H.L. Zhou, Effect of Hydrogen Charging on Microstructural Evolution and Corrosion Behavior of a Ti-4Al-2V-1Mo-1Fe Alloy, J. Mater. Sci. Technol., 2021, 60, p 168–176.

    Article  CAS  Google Scholar 

  31. D. Starosvetsky, O. Khaselev, J. Starosvetsky, R. Armon and J. Yahalom, Effect of Iron Exposure in SRB Media on Pitting Initiation, Corros. Sci., 2000, 42, p 345–359.

    Article  CAS  Google Scholar 

  32. K.M. Moon, H.R. Cho, M.H. Lee, S.K. Shin and S.C. Koh, Electrochemical Analysis of the Microbiologically Influenced Corrosion of Steels by Sulfate-Reducing Bacteria, Met. Mater. Int., 2007, 13, p 211–216.

    Article  CAS  Google Scholar 

  33. J. Xu, K.X. Wang, C. Sun, F.H. Wang, X.M. Li, J.X. Yang and C.K. Yu, The Effects of Sulfate Reducing Bacteria on Corrosion of Carbon Steel Q235 Under Simulated Disbonded Coating by Using Electrochemical Impedance Spectroscopy, Corros. Sci., 2011, 53, p 1554–1562.

    Article  CAS  Google Scholar 

  34. L.L. Yang, J.L. Wang, R.Z. Yang, S.S. Yang, Y.X. Jia, M.H. Chen, Y.X. Qiao, P.Y. Guo, S.L. Zhu and F.H. Wang, Oxidation Behavior of a Nanocrystalline Coating with Low Ta Content at High Temperature, Corros. Sci., 2021, 180, p 109182.

    Article  CAS  Google Scholar 

  35. M.M. Solomon, S.A. Umoren, M.A. Quraishi and M. Salman, Myristic Acid Based Imidazoline Derivative as Effective Corrosion Inhibitor for Steel in 15% HCl Medium, J. Colloid Interf. Sci., 2019, 551, p 47–60.

    Article  CAS  Google Scholar 

  36. Y.X. Qiao, J. Huang, D. Huang, J. Chen, W. Liu, Z.B. Wang and Z.B. Zheng, Effects of Laser Scanning Speed on Microstructure, Microhardness and Corrosion Behavior of Laser Cladding Ni45 Coatings, J. Chem., 2020, 2020, p 1438473.

    Article  CAS  Google Scholar 

  37. F. Chen, Y.D. Li, J. Yang, X. Tang and Y. Li, Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions, Acta Metall. Sin., 2020, 56, p 137–147.

    CAS  Google Scholar 

  38. E.E. Oguzie, J.B. Li, Y.Q. Liu, D.M. Chen, Y. Li, K. Yang and F.H. Wang, The Effect of Cu Addition on the Electrochemical Corrosion and Passivation Behavior of Stainless Steels, Electrochim. Acta, 2010, 55, p 5028–5035.

    Article  CAS  Google Scholar 

  39. Y.X. Qiao, X.Y. Wang, L.L. Yang, X.J. Wang, J. Chen, H.L. Zhou, Z.B. Wang, J.S. Zou and F.H. Wang, Effect of Aging Treatment on Microstructure and Corrosion Behavior of a Fe-18Cr-15Mn-0.66N Stainless Steel, J. Mater. Sci. Technol., 2021. https://doi.org/10.1016/j.jmst.2021.06.079.

    Article  Google Scholar 

  40. L.L. Li, Z.B. Wang, S.Y. He and Y.G. Zheng, Correlation Between Depassivation and Repassivation Processes Determined by Single Particle Impingement: Its Crucial Role in the Phenomenon of Critical Flow Velocity for Erosion-Corrosion, J. Mater. Sci. Technol., 2021, 89, p 158–166.

    Article  Google Scholar 

  41. L.D. Teng, T.T. Zhao, T.F. Cheng and Y.T. Yang, Microstructure Evolution and Corrosion Behavior of Nb-Alloyed Cast Heat-Resistant Steel During Different Aging Treatments, J. Iron Steel Res. Int., 2020, 27, p 1456–1465.

    Article  CAS  Google Scholar 

  42. Y.X. Qiao, X. Cai, J. Cui and H.B. Li, Passivity and Semiconducting Behavior of a High Nitrogen Stainless Steel in Acidic nacl Solution, Adv. Mater. Scie. Eng., 2016, 2016, p 6065481.

    Google Scholar 

  43. Q. Yang and J.L. Luo, The Hydrogen-Enhanced Effects of Chloride Ions on the Passivity of Type 304 Stainless Steel, Electrochim. Acta, 2000, 45, p 3927–3937.

    Article  CAS  Google Scholar 

  44. X. Zhang, K. Xiao, C.F. Dong, J.S. Wu, X.G. Li and Y.Z. Huang, In situ Raman Spectroscopy Study of Corrosion Products on the Surface of Carbon Steel in Solution Containing Cl and SO42−, Eng. Fail. Anal., 2011, 18, p 1981–1989.

    Article  CAS  Google Scholar 

  45. D.D.N. Singh, S. Yadav and J.K. Saha, Role of Climatic Conditions on Corrosion Characteristicsof Structural Steels, Corros. Sci., 2008, 50, p 93–110.

    Article  CAS  Google Scholar 

  46. J.Q. Jing, J. Guo, B. Li, S.J. Jia and Y. Ren, Relationship Between Microstructure and Corrosion Behavior of High-Grade Pipeline Steel in a Low-Temperature Environment, J. Iron Steel Res. Int., 2021, 28, p 1037–1046.

    Article  CAS  Google Scholar 

  47. Q.N. Song, Y. Tong, H.L. Li, H.N. Zhang, N. Xu, G.Y. Zhang, Y.F. Bao, W. Liu, Z.G. Liu and Y.X. Qiao, Corrosion and Cavitation Erosion Resistance Enhancement of Cast Ni-Al Bronze by Laser Surface Melting, J. Iron Steel Res. Int., 2021 https://doi.org/10.1007/s42243-021-00674-3

    Article  Google Scholar 

  48. Y.X. Qiao, Y.P. Chen, L.L. Li, W. Emori, J. Chen, X.J. Wang, L.L. Yang, H.L. Zhou, G. Song, N. Naik, Z.B. Wang and Z.H. Guo, Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel with Hydrogen Charging, JOM, 2021, 73, p 1165–1172.

    Article  CAS  Google Scholar 

  49. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson and R.S.C. Smart, Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci., 2011, 257, p 2717–2730.

    Article  CAS  Google Scholar 

  50. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger and N.S. McIntyre, Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in iron Compounds, Surf. Interface Anal., 2004, 36, p 1564–1574.

    Article  CAS  Google Scholar 

  51. Y.Y. Chen, H.J. Tzeng, L.I. Wei, L.H. Wang, J.C. Oung and H.C. Shih, Corrosion Resistance and Mechanical Properties of Low-Alloy Steels Under Atmospheric Conditions, Corros. Sci., 2005, 47, p 1001–1021.

    Article  CAS  Google Scholar 

  52. Y. Ma, Y. Li and F. Wang, Corrosion of Low Carbon Steel in Atmospheric Environments of Different Chloride Content, Corros. Sci., 2009, 51, p 997–1006.

    Article  CAS  Google Scholar 

  53. S. Hœrlé, F. Mazaudier, P. Dillmann and G. Santarini, Advances in Understanding Atmospheric Corrosion of Iron II Mechanistic Modelling of Wet–Dry Cycles, Corros. Sci., 2004, 46, p 1431–1465.

    Article  CAS  Google Scholar 

  54. L. Pang, Z.B. Wang, M.H. Lu, Y. Lu, X. Liu and Y.G. Zheng, Inhibition Performance of Benzimidazole Derivatives with Different Heteroatoms on the Under-Deposit Corrosion of Carbon Steel in CO2-Saturated Solution, Corros. Sci., 2021, 192, p 109841.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (Nos. 51779111, 52005228 and 51401092), the Basic Scientific Research (2019414C003) and Science Foundation of Jiangsu Province (BK 20180984).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxin Qiao, Jie Cui or Jingyong Li.

Ethics declarations

Data Availability

Thee datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Yan, Q., Cui, J. et al. Effect of Hydrogen Charging on the Corrosion Behavior of E690 Steel in 3.5 wt.% NaCl Solution. J. of Materi Eng and Perform 31, 3826–3834 (2022). https://doi.org/10.1007/s11665-021-06473-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06473-x

Keywords

Navigation