Skip to main content

Advertisement

Log in

Effect of Ag Doping on the Microstructure and Electrochemical Response of TiAlN Coatings Deposited by DCMS/HiPIMS Magnetron Sputtering

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Incorporation of silver particles in nitride coatings has been used to improve the mechanical resistance of steels, but few details are known about the effect of the incorporation of these metals on the electrochemical behavior. In order to evaluate the corrosion resistance and the possible formation of a galvanic couple between the ceramic matrix of TiAlN and the metallic Ag, a TiAlN composite coating doped with four different contents of silver (0.8-25 at.%) was deposited on AISI H11 hot working steel, using the hybrid DCMS/HiPIMS magnetron sputtering technique. The microstructure, topography, elemental chemical, and phase composition of the coatings were determined using SEM/EDS, AFM, XRD, and XPS characterization techniques. The electrochemical behavior was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The TiAlN matrix and TiAlN(Ag)-coated samples exhibit higher impedance modulus values than steel substrate, indicating better anticorrosion performance. The anodic current density of the Ag-doped coating increases with the Ag content, suggesting enhanced silver release to the surrounding electrolyte. The TiAlN coating doped with 0.8 at.% silver exhibited the highest corrosion resistance at long immersion times. Finally, it must be noted that all the coatings exhibited corrosion protection to the AISI H11 steel substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.D. Jacobsen, R. Hinrichs, I.J.R. Baumvol, G. Castellano and M.A.Z. Vasconcellos, Depth Distribution of Martensite in Plasma Nitrided AISI H13 Steel and its Correlation to Hardness, Surf. Coat. Technol., 2015, 270, p 266–271. https://doi.org/10.1016/j.surfcoat.2015.02.046

    Article  CAS  Google Scholar 

  2. G.B. Gaitan, M.G. Botero and M.A. Franco, Deposition and Characterization of Duplex Treated Coating System Applied on Hot Work Steel AISI H13, Rev. Latinoam. Metal. y Mater., 2012, 32, p 218–224.

    Google Scholar 

  3. R.A. Mesquita, M. Kubin and R. Schneider, Tool steels: Properties and performance, CRC Press Taylor & Francis Group, New York, 2017.

    Google Scholar 

  4. Y. Kayali, The Corrosion and Wear Behavior of TiN and TiAlN Coated AISI 316 L Stainless Steel, Physicochem. Probl. Mater. Prot., 2014, 50, p 412–419. https://doi.org/10.1134/S207020511403006X

    Article  CAS  Google Scholar 

  5. V.M.C.A. De Oliveira, C. Aguiar, A.M. Vazquez, A.L.M. Robin and M.J.R. Barboza, Corrosion Behavior Analysis of Plasma-Assisted PVD Coated Ti-6Al-4V Alloy in 2 M NaOH Solution, Mater. Res., 2017, 20, p 436–444. https://doi.org/10.1590/1980-5373-MR-2015-0737

    Article  Google Scholar 

  6. V.F.C. Sousa, F.J.G. Da Silva, G.F. Pinto, A. Baptista and R. Alexandre, Characteristics and Wear Mechanisms Of Tialn-Based Coatings for Machining Applications: A Comprehensive Review, Metals (Basel)., 2021, 11, p 1–49. https://doi.org/10.3390/met11020260

    Article  CAS  Google Scholar 

  7. D.M. Mattox, Handbook of physical vapor deposition ( PVD ) Processing, Film Formation, Adhesion, Surface, Preparation and contamination control, Noyes Publications, U.S.A, New Jersey, 1998.

    Google Scholar 

  8. K. Sarakinos, J. Alami and S. Konstantinidis, High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art, Surf. Coat. Technol., 2010, 204, p 1661–1684. https://doi.org/10.1016/j.surfcoat.2009.11.013

    Article  CAS  Google Scholar 

  9. B. Gui, H. Zhou, J. Zheng, X. Liu, X. Feng and Y. Zhang, Microstructure and Properties of TiAlCrN Ceramic Coatings Deposited by Hybrid HiPIMS/DC Magnetron Co-Sputtering, Ceram. Int., 2021. https://doi.org/10.1016/j.ceramint.2020.11.175

  10. W. Tillmann, D. Grisales, D. Stangier, I. Ben Jebara, H. Hang, Influence of the Etching Processes on the Adhesion of TiAlN coatings Deposited by DCMS, HiPIMS and Hybrid Techniques on Heat Treated AISI H11. Surf. Coat. Technol., 2019, 378, p 125075

  11. I. Ebrahimzadeh and F. Ashrafizadeh, The Influence of Temperature on the Frictional Behavior of Duplex-Coated Die Steel Rubbing Against Forging Brass, J. Mater. Eng. Perform., 2014 https://doi.org/10.1007/s11665-014-1301-4

    Article  Google Scholar 

  12. K.V. Chauhan and S.K. Rawal, A Review Paper on Tribological and Mechanical Properties of Ternary Nitride Based Coatings, Procedia Technol., 2014, 14, p 430–437. https://doi.org/10.1016/j.protcy.2014.08.055

    Article  Google Scholar 

  13. J.M. Paiva, G. Fox-rabinovich, E.L. Junior, P. Stolf, Y. Seid, A. Id, M.M. Martins, C. Bork and S. Veldhuis, Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool, Materials (Basel)., 2018 https://doi.org/10.3390/ma11030358

    Article  Google Scholar 

  14. D. Zheng, S. Zhu and F. Wang, The Influence of TiAIN and enamel Coatings on the Corrosion Behavior of Ti6Al4V Alloy in the Presence of Solid NaCl Deposit and Water Vapor at 450 °C, Surf. Coat. Technol., 2007, 201, p 5889–5864.

    Google Scholar 

  15. M. Zhang, L. Xin, X. Ding, S. Zhu and F. Wang, Effects Ti/TiAlN Composite Multilayer Coatings on Corrosion Resistance of Titanium Alloy in Solid NaCl-H2O-O2 at 600 °C, J. Alloys Compd., 2018, 734, p 307–317. https://doi.org/10.1016/J.JALLCOM.2017.11.035

    Article  CAS  Google Scholar 

  16. Q. Cai, S. Li, J. Pu, X. Bai, H. Wang, Z. Cai and X. Wang, Corrosion Resistance and Antifouling Activities of Silver-Doped CrN Coatings Deposited by Magnetron Sputtering, Surf. Coat. Technol., 2018, 354, p 194–202. https://doi.org/10.1016/j.surfcoat.2018.09.006

    Article  CAS  Google Scholar 

  17. A.M. Echavarría, J.A. Calderón and G. Gilberto Bejarano, Characterization of the Structure and Electrochemical Behavior of Ag-TaN Nanostructured Composite Coating for Biomedical Applications, Surf Coat. Technol., 2018 https://doi.org/10.1016/j.surfcoat.2018.04.012

    Article  Google Scholar 

  18. X. Liu, J. Kavanagh, A. Matthews and A. Leyland, The Combined Effects of Cu and Ag on the Nanostructure and Mechanical Properties of CrCuAgN PVD Coatings, Surf. Coat. Technol., 2015, 284, p 101–111. https://doi.org/10.1016/J.SURFCOAT.2015.08.070

    Article  CAS  Google Scholar 

  19. L. Incerti, A. Rota, S. Valeri, A. Miguel, J.A. García, R.J. Rodríguez and J. Osés, Nanostructured Self-Lubricating CrN-Ag Films Deposited by PVD arc Discharge and Magnetron Sputtering, Vaccum., 2011, 85, p 1108–1113. https://doi.org/10.1016/j.vacuum.2011.01.022

    Article  CAS  Google Scholar 

  20. A.M. Echavarría, S. Robledo and G. Gilberto Bejarano, Influence of Ag Nanoparticles on the Mechanical and Tribological Properties and on the Cytotoxic and Bactericidal Effects of TaN(Ag) Coatings, Rev. Metal., 2017 https://doi.org/10.3989/revmetalm.085

    Article  Google Scholar 

  21. A.M. Echavarría and G. Bejarano G., J.M. Meza, Mechanical and Tribological Features of TaN(Ag-Cu) Duplex Nanocomposite Coatings: Their Response to Heat Treatment, Ingeniare, 2017 https://doi.org/10.4067/S0718-33052017000400662

    Article  Google Scholar 

  22. C. Dang, J. Li, Y. Wang, Y. Yang, Y. Wang and J. Chen, Influence of Ag Contents on Structure and Tribological Properties of TiSiN-Ag Nanocomposite Coatings on Ti–6Al–4V, Appl. Surf. Sci., 2017, 394, p 613–624. https://doi.org/10.1016/j.apsusc.2016.10.126

    Article  CAS  Google Scholar 

  23. H. Ju, L. Yu, D. Yu, I. Asempah and J. Xu, Microstructure, Mechanical and Tribological Properties of TiN-Ag Films Deposited by Reactive Magnetron Sputtering, Vacuum, 2017, 141, p 82–88. https://doi.org/10.1016/j.vacuum.2017.03.026

    Article  CAS  Google Scholar 

  24. L. Yu, H. Zhao and J. Xu, Influence of Silver Content on Structure, Mechanical and Tribological Properties of WCN–Ag Films, Mater. Charact., 2016, 114, p 136–145. https://doi.org/10.1016/j.matchar.2016.02.013

    Article  CAS  Google Scholar 

  25. H.D. Mejía, A.M. Echavarría and G. Bejarano G., Influence of Ag-Cu Nanoparticles on the Microstructural and Bactericidal Properties of TiAlN(Ag, Cu) Coatings for Medical Applications Deposited by Direct Current (DC) Magnetron Sputtering, Thin Solid Films, 2019, 687, p 137460. https://doi.org/10.1016/j.tsf.2019.137460

    Article  CAS  Google Scholar 

  26. H.D. Mejía V, D. Perea, G. Bejarano G, Development and Characterization of TiAlN(Ag,Cu) Nanocomposite Coatings Deposited by DC Magnetron Sputtering for Tribological Applications. Surf. Coat. Technol. 2020, 381, p 125095

  27. F. Karabudak, R. Yeşildal, E.E. Şüküroğlu, S. Şüküroğlu, H. Zamanlou, N. Dikbaş, F. Bayındır, S. Şen and Y. Totik, An Investigation of Corrosion Resistance and Antibacterial Sensitivity Properties of Nano-Ag-Doped TiO2 Coating and TiO2 Coating Grown on NiTi Alloy with the Micro-Arc Oxidation Process, Arab. J. Sci. Eng., 2017, 42, p 2329–2339. https://doi.org/10.1007/s13369-017-2463-9

    Article  CAS  Google Scholar 

  28. E.E. Sukuroglu, Investigation of Antibacterial Susceptibility of Ag-Doped Oxide Coatings onto AZ91 Magnesium Alloy by Microarc Oxidation Method, Adv. Mater. Sci. Eng., 2018, 2018, p 6871241. https://doi.org/10.1155/2018/6871241

    Article  CAS  Google Scholar 

  29. G. Greczynski, L. Hultman and M. Odén, X-ray Photoelectron Spectroscopy Studies of Ti1-xAlxN (0 ≤ x ≤ 0.83) High-Temperature Oxidation: The Crucial Role of Al Concentration, Surf. Coat. Technol., 2019, 374, p 923–934. https://doi.org/10.1016/j.surfcoat.2019.06.081

    Article  CAS  Google Scholar 

  30. G. Greczynski, J. Jensen, J.E. Greene, I. Petrov and L. Hultman, X-ray Photoelectron Spectroscopy Analyses of the Electronic Structure of Polycrystalline Ti 1–x Al x N Thin Films with 0 ≤ x ≤ 0.96, Surf. Sci. Spectra., 2014, 21, p 35–49. https://doi.org/10.1116/11.20140506

    Article  CAS  Google Scholar 

  31. G. Greczynski, J. Lu, M. Johansson, J. Jensen, I. Petrov, J.E. Greene and L. Hultman, Selection of Metal Ion Irradiation for Controlling Ti 1-xAl xN Alloy Growth Via Hybrid HIPIMS/Magnetron Co-Sputtering, Vacuum, 2012, 86, p 1036–1040. https://doi.org/10.1016/j.vacuum.2011.10.027

    Article  CAS  Google Scholar 

  32. G. Greczynski, J. Lu, J. Jensen, S. Bolz, W. Kölker, C. Schiffers, O. Lemmer, J.E. Greene and L. Hultman, A Review of Metal-Ion-Flux-Controlled Growth of Metastable TiAlN by HIPIMS/DCMS co-Sputtering, Surf. Coat. Technol., 2014, 257, p 15–25. https://doi.org/10.1016/j.surfcoat.2014.01.055

    Article  CAS  Google Scholar 

  33. H. Chandler, V. Flint, R.L. Boring, C. Powers, Heat Treater’s Guide Practices and Procedures for Irons and Steels, ASM Int. (1995)

  34. W. Tillmann, D. Grisales and D. Stangier, Effects of AISI H11 Surface Integrity on the Residual Stresses and Adhesion of TiAlN/Substrate Compounds, Surf. Coat. Technol., 2019, 357, p 466–472. https://doi.org/10.1016/j.surfcoat.2018.10.032

    Article  CAS  Google Scholar 

  35. M. Al Bukhaiti, K. Al-hatab, W. Tillmann, F. Hoffmann and T. Sprute, Tribological and Mechanical Properties ofTi/TiAIN/TiAICN Nanoscale Multilayer PVD Coatings Deposited on AISI Hl 1 Hot Work Tool Steel, Appl. Surf. Sci., 2014, 318, p 180–190.

    Article  CAS  Google Scholar 

  36. C. Rebholz, H. Ziegele, A. Leyland and A. Matthews, Structure, Mechanical and Tribological Properties of Nitrogen-Containing Chromium Coatings Prepared by Reactive Magnetron Sputtering, Surf. Coat. Technol., 1999, 115, p 222–229. https://doi.org/10.1016/S0257-8972(99)00240-6

    Article  CAS  Google Scholar 

  37. G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee and S.Y. Lee, Effects of the Thickness of Ti Buffer Layer on the Mechanical Properties of TiN Coatings, Surf. Coat. Technol., 2003, 171, p 83–90. https://doi.org/10.1016/S0257-8972(03)00243-3

    Article  CAS  Google Scholar 

  38. C. Huang, Deposition of (Ti, Al) N Films on A2 Tool Steel by Reactive r.f. Magnetron Sputtering, Surf. Coat. Technol., 1995, 71, p 259–266.

    Article  CAS  Google Scholar 

  39. E. Uhlmann, B. Stawiszynski, C. Leyens, S. Heinze and F. Sammler, Hard Turning of Hot Work and Cold Work Steels with HiPIMS and DCMS TiAlN Coated Carbide Inserts, CIRP Conf. High Perform. Cut., 2016, 46, p 591–594. https://doi.org/10.1016/j.procir.2016.03.231

    Article  Google Scholar 

  40. W. Tillmann, D. Grisales, D. Stangier, I. Ben Jebara and H. Kang, Influence of the Etching Processes on the Adhesion of TiAlN Coatings Deposited by DCMS, HiPIMS and Hybrid Techniques on Heat Treated AISI H11, Surf. Coat. Technol., 2019, 378, p 1–15.

    Article  Google Scholar 

  41. H.D. Mejía V, D. Perea and G. Gilberto Bejarano, Development and Characterization of TiAlN(Ag, Cu) Nanocomposite Coatings Deposited by DC Magnetron Sputtering for Tribological Applications. Surf. Coat. Technol., 2020, 381, p 125095. https://doi.org/10.1016/j.surfcoat.2019.125095.

  42. P.A. Papi, C.P. Mulligan and D. Gall, CrN–Ag Nanocomposite Coatings: Control of Lubricant Transport by Diffusion Barriers, Thin Solid Films, 2012, 524, p 211–217. https://doi.org/10.1016/j.tsf.2012.10.010

    Article  CAS  Google Scholar 

  43. S. Calderon Velasco, A. Cavaleiro and S. Carvalho, Functional Properties of Ceramic-Ag Nanocomposite Coatings Produced by Magnetron Sputtering, Prog. Mater. Sci., 2016 https://doi.org/10.1016/j.pmatsci.2016.09.005

    Article  Google Scholar 

  44. Y.N. Kok and P.E. Hovsepian, Resistance of Nanoscale Multilayer C/Cr Coatings Against Environmental Attack, Surf. Coat. Technol., 2006, 201, p 3596–3605. https://doi.org/10.1016/j.surfcoat.2006.08.109

    Article  CAS  Google Scholar 

  45. Y. Xin, C. Liu, K. Huo, G. Tang, X. Tian and P.K. Chu, Corrosion Behavior of ZrN/Zr Coated Biomedical AZ91 Magnesium Alloy, Surf. Coat. Technol., 2009, 203, p 2554–2557. https://doi.org/10.1016/j.surfcoat.2009.02.074

    Article  CAS  Google Scholar 

  46. S.H. Ahn, J.H. Yoo, J.G. Kim and J.G. Han, On the Corrosion Behavior of Multilayered WC-Ti1-xAlxN Coatings on AISI D2 Steel. Surf. Coat. Technol. 163–64 (n.d.) 611–619. http://cat.inist.fr/?aModele=afficheN&cpsidt=14464939 (accessed June 29, 2016)

  47. D.A. Delisle and J.E. Krzanowski, Surface Morphology and Texture of TiAlN/CrN Multilayer Coatings, Thin Solid Films, 2012, 524, p 100–106. https://doi.org/10.1016/J.TSF.2012.09.073

    Article  CAS  Google Scholar 

  48. C.P. Mulligan and D. Gall, CrN–Ag Self-Lubricating Hard Coatings, Surf. Coat. Technol., 2005, 200, p 1495–1500. https://doi.org/10.1016/j.surfcoat.2005.08.063

    Article  CAS  Google Scholar 

  49. T. de los Arcos, P. Oelhafen, U. Aebi, A. Hefti, M. Düggelin, D. Mathys, R. Guggenheim, Preparation and Characterization of TiN–Ag Nanocomposite Films, Vacuum, 2002, 67, p 463–470. https://doi.org/10.1016/S0042-207X(02)00232-4

    Article  Google Scholar 

  50. S. Kumar, S.R. Maity and L. Patnaik, Friction and Tribological Behavior of Bare Nitrided, TiAlN and AlCrN Coated MDC-K Hot Work Tool Steel, Ceram. Int., 2020, 46, p 17280–17294. https://doi.org/10.1016/j.ceramint.2020.04.015

    Article  CAS  Google Scholar 

  51. O. Comakli, Improved Structural, Mechanical, Corrosion and Tribocorrosion Properties of Ti45Nb Alloys by TiN, TiAlN Monolayers, and TiAlN/TiN Multilayer Ceramics Films, Ceram. Int., 2021, 47, p 4149–4156.

    Article  CAS  Google Scholar 

  52. P. Zeman, Structure and Properties of Hard and Superhard Zr – Cu – N Nanocomposite Coatings, Mater. Sci. Eng. A., 2000, 289, p 189–197. https://doi.org/10.1016/S0921-5093(00)00917-5

    Article  Google Scholar 

  53. D. Gall, S. Kodambaka, M.A. Wall, I. Petrov and J.E. Greene, Pathways of Atomistic Processes on TiN(001) and (111) Surfaces During Film Growth: An ab Initio Study, J. Appl. Phys., 2003, 93, p 9086–9094. https://doi.org/10.1063/1.1567797

    Article  CAS  Google Scholar 

  54. A. Obrosov, R. Gulyaev, M. Ratzke, A. Volinsky, S. Bolz, M. Naveed and S. Weiß, XPS and AFM Investigations of Ti-Al-N Coatings Fabricated Using DC Magnetron Sputtering at Various Nitrogen Flow Rates and Deposition Temperatures, Metals (Basel)., 2017, 7, p 52. https://doi.org/10.3390/met7020052

    Article  CAS  Google Scholar 

  55. R. Ananthakumar, B. Subramanian, A. Kobayashi and M. Jayachandran, Electrochemical Corrosion and Materials Properties of Reactively Sputtered TiN/TiAlN Multilayer Coatings, Ceram. Int., 2012, 38, p 477–485. https://doi.org/10.1016/j.ceramint.2011.07.030

    Article  CAS  Google Scholar 

  56. C.F. Almeida Alves, F. Oliveira, I. Carvalho, A.P. Piedade and S. Carvalho, Influence of Albumin on the Tribological Behavior of Ag – Ti (C, N) Thin Films for Orthopedic Implants, Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 34, p 22–28. https://doi.org/10.1016/j.msec.2013.09.031

    Article  CAS  Google Scholar 

  57. H.D. Mejía, A.M. Echavarría, J.A. Calderón and G. Gilberto Bejarano, Microstructural and Electrochemical Properties of TiAlN(Ag, Cu) Nanocomposite Coatings for Medical Applications Deposited by dc Magnetron Sputtering, J. Alloys Compd., 2020, 828, p 154396. https://doi.org/10.1016/J.JALLCOM.2020.154396

    Article  Google Scholar 

  58. L. Cunha, M. Andritschky, L. Rebouta and K. Pischow, Corrosion of CrN and TiAlN Coatings in Chloride-Containing Atmospheres, Surf. Coat. Technol., 1999, 116–119, p 1152–1160. https://doi.org/10.1016/S0257-8972(99)00270-4

    Article  Google Scholar 

  59. A. Amirudin and D. Thieny, Application of Electrochemical Impedance Spectroscopy to Study the Degradation of Polymer-Coated Metals, Prog. Org. Coat., 1995, 26, p 1–28.

    Article  CAS  Google Scholar 

  60. D. Quintero, O. Galvis, J.A. Calderón, J.G. Castaño and F. Echeverría, Effect of Electrochemical Parameters on the Formation of Anodic Films on Commercially Pure Titanium by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2014, 258, p 1223–1231. https://doi.org/10.1016/j.surfcoat.2014.06.058

    Article  CAS  Google Scholar 

  61. I.C.P. Margarit-Mattos, EIS and Organic Coatings Performance: Revisiting Some Key Points, Electrochim. Acta. 2020, 354, p 136725

  62. S.N. Akao, M.N. Umata, T.O. Hmi, Thin and Low-Resistivity Tantalum Nitride Diffusion Barrier and Giant-Grain Copper Interconnects for Advanced ULSI Metallization, Jpn. J.Appl. Phys., 1999, 2401 p 4–9

  63. A. Mazare, A. Anghel, C. Surdu-Bob, G. Totea, I. Demetrescu and D. Ionita, Silver Doped Diamond-Like Carbon Antibacterial and Corrosion Resistance Coatings on Titanium, Thin Solid Films, 2018, 657, p 16–23. https://doi.org/10.1016/j.tsf.2018.04.036

    Article  CAS  Google Scholar 

  64. T. Yetim, Corrosion Behavior of Ag-doped TiO2 Coatings on Commercially Pure Titanium in Simulated Body Fluid Solution, J. Bionic Eng., 2016, 13, p 397–405. https://doi.org/10.1016/S1672-6529(16)60311-6

    Article  Google Scholar 

  65. T. Wang and Z. J, L. Yan, F. Gao and G. Zhang, Self-Lubricating TiN/MoN and TiAlN/MoN Nano-Multilayer Coatings for Drilling of Austenitic Stainless Steel, Ceram. Int., 2019, 45, p 24248–24253. https://doi.org/10.1016/j.cerarnint.2019.08.136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Departamento Administrativo de Ciencia, Tecnología e Innovación COLCIENCIAS for the financial support of this work (Contrat.768-2017). The authors also acknowledge the German Research Foundation (DFG) for supporting the development of the TiAlN hybrid coatings within the project Ti 343/34-2 and the German Academic Exchange Service (DAAD) in the scope of the project PPP-PROCOL 57394123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida M. Echavarría.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillmann, W., Grisales, D., Echavarría, A.M. et al. Effect of Ag Doping on the Microstructure and Electrochemical Response of TiAlN Coatings Deposited by DCMS/HiPIMS Magnetron Sputtering. J. of Materi Eng and Perform 31, 3811–3825 (2022). https://doi.org/10.1007/s11665-021-06467-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06467-9

Keywords

Navigation