Skip to main content
Log in

Investigation on Intermetallic Compounds Formation and Effect of Reinforcing Particles during Friction Stir Vibration Brazing

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, low carbon steel sheets were joined by the application of friction stir brazing (FSB) and friction stir vibration brazing (FSVB) processes while %67wt Sn-%33wt Pb alloy was used as filler material and SiO2 nanoparticles were utilized as reinforcing particles. The microstructure and mechanical properties of the developed joints were compared. The results indicated that the presence of mechanical vibration in FSVB promoted metallurgical reaction between the filler and base metals due to the enhanced thermal effect. Shear force for fracture and the joint hardness increased about 25 and 20%, respectively, as FSVB was replaced by FSB. The results also showed that the presence of vibration in FSVB led to the grain size decrease in the joint and enhanced the homogeneity of SiO2 particles distribution. According to fracture analyses, the number of dimples increased and the plasticity of the joint enhanced as FSVB was applied. Wetting of molten filler on substrate steels enhanced while vibration frequency increased. A continuous intermetallic compound layer with a fair thickness was formed as FSVB with a high-frequency value (50 Hz) was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.K. Ray, A. Kar, S. Kori, L. Pathak and A. Sonnad, Graphite-to-304SS Braze Joining by Active Metal-brazing Technique: Improvement of Mechanical Properties, J. Mater. Eng. Perform., 2013, 22, p 258–266. https://doi.org/10.1007/s11665-012-0225-0

    Article  CAS  Google Scholar 

  2. M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian and B. Bagheri, Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Steel-copper Joints, J. Mech. Sci. Tech., 2017, 31, p 1135–1142. https://doi.org/10.1007/s12206-016-1217-z

    Article  Google Scholar 

  3. G. Sierra, P. Peyre, F. Deschaux-Beaume, D. Stuart and G. Fras, Steel to Aluminium Braze Welding by Laser Process with Al–12Si Filler Wire, Sci. Technol. Weld. Join., 2008, 13, p 430–437. https://doi.org/10.1179/174329308X341852

    Article  CAS  Google Scholar 

  4. A. Mathieu, R. Shabadi, A. Deschamps, M. Suery, S. Mattei, D. Grevey and E. Cicala, Dissimilar Material Joining using Laser (Aluminum to Steel using Zinc-based Filler Wire), Opt. Laser Technol., 2007, 39, p 652–661. https://doi.org/10.1016/j.optlastec.2005.08.014

    Article  CAS  Google Scholar 

  5. P. Peyre, G. Sierra, F. Deschaux-Beaume, D. Stuart and G. Fras, Generation of Aluminium–steel Joints with Laser-induced Reactive Wetting, Mater. Sci. Eng. A., 2007, 444(1–2), p 327–338. https://doi.org/10.1016/j.msea.2006.09.111

    Article  CAS  Google Scholar 

  6. H.R. Faridi, J.H. Devletian and H. Le, A New Look at Flux-free Ultrasonic Soldering, Weld. J., 2000, 79(9), p 41–45.

    CAS  Google Scholar 

  7. Y.C. Chen, T. Komazaki, T. Tsumura and K. Nakata, Role of Zinc Coat in Friction Stir Lap Welding Al and Zinc Coated Steel, Mater. Sci. Technol., 2008, 24(1), p 33–39. https://doi.org/10.1179/174328407X248505

    Article  CAS  Google Scholar 

  8. Y.C. Chen, T. Komazaki, T. Tsumura and K. Nakata, Interface Microstructure Study of Friction Stir Lap Joint of AC4C Cast Aluminum Alloy and Zinc-coated Steel, Mater. Chem. Phys., 2008, 111, p 375–380. https://doi.org/10.1016/j.matchemphys.2008.04.038

    Article  CAS  Google Scholar 

  9. K. Kimapong and T. Watanabe, Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding, Mater. Trans., 2005, 46(4), p 835–841.

    Article  CAS  Google Scholar 

  10. K. Kimapong and T. Watanabe, Effect of Welding Process Parameters on Mechanical Property of FSW Lap Joint Between Aluminum Alloy and Steel, Mater. Trans, 2005, 46(10), p 2211.

    Article  CAS  Google Scholar 

  11. G. Zhang, W. Su, J. Zhang and Z. Wei, Friction Stir Brazing: A Novel Process for Fabricating Al/steel Layered Composite and for Dissimilar Joining of Al to Steel, Metall. Mater. Trans. A., 2022, 42A, p 2850–2861. https://doi.org/10.1007/s11661-011-0677-0

    Article  CAS  Google Scholar 

  12. M.J. Javadi and M. Fazel-Najafabadi, Effect of Friction Stir Brazing Parameters on Microstructure and Mechanical Properties of Dissimilar Alloys Joint, Ind. J. Sci. Res., 2014, 2, p 615–622.

    Google Scholar 

  13. G. Zhang, L. Zhang, C. Kang and J. Zhang, Development of Friction Stir Spot Brazing, Mater. Des., 2016, 94, p 502–514. https://doi.org/10.1016/j.matdes.2016.01.057

    Article  CAS  Google Scholar 

  14. A. Ebrahimian and A.H. Kokabi, Friction Stir Soldering: A Novel Route to Produce Graphite-copper Dissimilar Joints, Mater. Des., 2017, 116(15), p 599–608. https://doi.org/10.1016/j.matdes.2016.12.057

    Article  CAS  Google Scholar 

  15. G. Huang, X. Feng, Y. Shen, Q. Zheng and P. Zhao, Friction Stir Brazing of 6061 Aluminum Alloy and H22 Brass: Evaluation of Microstructure, Mechanical and Fracture Behavior, Mater Des., 2016, 99, p 403–411. https://doi.org/10.1016/j.matdes.2016.03.094

    Article  CAS  Google Scholar 

  16. G. Zhang, X. Yang, D. Zhu and L. Zhang, Cladding Thick Al Plate onto Strong Steel Substrate using a Novel Process of Multilayer-friction Stir Brazing (ML-FSB), Mater. Des., 2020, 185, 108232. https://doi.org/10.1016/j.matdes.2019.108232

    Article  CAS  Google Scholar 

  17. G. Huang, J. Huang, M. Zhang, D. Mu, G. Zhou and X. Xu, Fundamental Aspects of Ultrasonic Assisted Induction Brazing of Diamond onto 1045 Steel, J. Mater. Process. Technol., 2018, 260, p 123–136. https://doi.org/10.1016/j.jmatprotec.2018.05.021

    Article  CAS  Google Scholar 

  18. L. Tianmin, G. Weibing, Y. Shenghua, M.A. Zhipeng, H.E. Jingshan and Y. Jiuchun, Effect of Intermetallic Compounds on Mechanical Properties of Copper Joints Ultrasonic-soldered with Sn-Zn Alloy, J. Mater. Process. Technol., 2017, 248, p 123–129. https://doi.org/10.1016/j.jmatprotec.2017.04.019

    Article  CAS  Google Scholar 

  19. Ch. Zhang, H. Ji, H. Xu, M. Liang, J. Huang, Sh. Pei and M. Li, Interfacial Microstructure and Mechanical Properties of Ultrasonic-assisted Brazing Joints Between Ti–6Al–4V and ZrO2, Ceramic. In., 2020, 46(6), p 7733–7740. https://doi.org/10.1016/j.ceramint.2019.11.276

    Article  CAS  Google Scholar 

  20. D.A. Krainova, N.S. Saetova, A.V. Kuzmin, A.A. Raskovavo, V.A. Eremin, M.V. Ananyev and R. Steinberger-Wilckens, Non-crystallising Glass Sealants for SOFC: Effect of Y2O3 Addition, Ceram. Int., 2020, 46(4), p 5193–5200. https://doi.org/10.1016/j.ceramint.2019.10.266

    Article  CAS  Google Scholar 

  21. R. Kiebach, K. Engelbrecht, L.G. Madsen, B. Sieborg, M. Chen, J. Hjelm, K. Norrman, Ch. Chatzichristodoulou and P.V. Hendriksen, An Ag Based Brazing System with a Tunable Thermal Expansion for the use as Sealant for Solid Oxide Cells, J. Power Sour., 2016, 315, p 339–350. https://doi.org/10.1016/j.jpowsour.2016.03.030

    Article  CAS  Google Scholar 

  22. T. Phongpreecha, J.D. Nicholas, T.R. Bieler and Y. Qi, Computational Design of Metal Oxides to Enhance the Wetting and Adhesion of Silver-based Brazes on Yttria-stabilized- zirconia, Act. Mater., 2018, 152, p 229–238. https://doi.org/10.1016/j.actamat.2018.04.024

    Article  CAS  Google Scholar 

  23. Zh. Wang, Ch. Li, X. Si, B. Yang, Y. Huang, J. Qi, J. Feng and J. Cao, Brazing YSZ Ceramics by a Novel SiO2 Nanoparticles Modified Ag Filler, Ceramic. In., 2020, 46, p 16493–16501. https://doi.org/10.1016/j.ceramint.2020.03.214

    Article  CAS  Google Scholar 

  24. G. Xu, X. Leng, H. Jiang, Z. Xiu and J. Yan, Microstructure and Strength of Ultrasonic-assisted Brazed Joints of Si3N4/6061Al Composites, J. Manuf. Process., 2020, 54, p 89–98. https://doi.org/10.1016/j.jmapro.2020.02.046

    Article  Google Scholar 

  25. A. Abdollahzadeh, B. Bagheri, M. Abbasi, F. Sharifi, S.E. Mirsalehi and A.O. Moghaddam, A Modified Version of Friction Stir Welding Process of Aluminum Alloys: Analyzing the Thermal Treatment and Wear Behavior, Proc IMechE Part L: J Mater.: Des. Appl. DoiL, 2021 https://doi.org/10.1177/14644207211023987

    Article  Google Scholar 

  26. M. Abbasi, A. Abdollahzadeh, B. Bagheri, A.O. Moghaddam, F. Sharifi and M. Dadaei, Study the Effect of the Welding Environment on the Dynamic Recrystallization Phenomenon and Residual Stresses during the FSW Process of Aluminum Alloy, Proc IMechE Part L: J Mater.: Des. Appl., 2021, 235, p 1809. https://doi.org/10.1177/14644207211025113

    Article  CAS  Google Scholar 

  27. B. Bagheri, A. Abdollahzadeh, M. Abbasi and A.H. Kokabi, Numerical Analysis of Vibration Effect on Friction Stir Welding by Smoothed Particle Hydrodynamics (SPH), In. J. Ad. Manuf. Technol., 2020, 110, p 209–228. https://doi.org/10.1007/s00170-020-05839-0

    Article  Google Scholar 

  28. S.H. Davies, Theory of Solidification, Cambridge University Press, New York, 2001.

    Book  Google Scholar 

  29. T.B. Massalski et al., Binary Alloy Phase Diagrams, 2nd ed. ASM International, USA, 1990.

    Google Scholar 

  30. Y.L. Shen, K.C.R. Abell and S.E. Garrett, Effects of Grain Boundary Sliding on Microstructural Evolution and Damage Accumulation in tin-lead Alloy, In. J. Dam. Mech., 2004, 13, p 225–240.

    Article  CAS  Google Scholar 

  31. B. Bagheri, M. Abbasi and A. Abdollahzadeh, Microstructure and Mechanical Characteristics of AA6061-T6 Joints Produced by Friction Stir Welding, Friction Stir Vibration Welding and Tungsten Inert Gas Welding: A Comparative Study, In. J. Min. Metall. Mater., 2021, 28(3), p 450–461. https://doi.org/10.1007/s12613-020-2085-1

    Article  CAS  Google Scholar 

  32. M. Abbasi, M. Givi and B. Bagheri, New Method to Enhance the Mechanical Characteristics of Al-5052 Alloy Weldment Produced by Tungsten Inert Gas, Proc IMechE Part B J Eng. Manuf., 2020 https://doi.org/10.1177/0954405420929777

    Article  Google Scholar 

  33. B. Bagheri, M. Abbasi, A. Abdollahzadeh and A.H. Kokabi, A Comparative Study Between Friction Stir Processing and Friction Stir Vibration Processing to Develop Magnesium Surface Nanocomposite, In. J. Min Metall. Mater., 2020, 27, p 1133–1146. https://doi.org/10.1007/s12613-020-1993-4

    Article  CAS  Google Scholar 

  34. K. Wu, X. Yuan, T. Li, H. Wang, C. Xu and J. Luo, Effect of Ultrasonic Vibration on TIG Welding–brazing Joining of Aluminum Alloy to Steel, J. Mater. Process. Tech., 2018, 266, p 230–238. https://doi.org/10.1016/j.jmatprotec.2018.11.003

    Article  CAS  Google Scholar 

  35. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, Singapore, 1988.

    Google Scholar 

  36. B. Bagheri, A.A.M. Rizi, M. Abbasi and M. Givi, Friction Stir Spot Vibration Welding: Improving the Microstructure and Mechanical Properties of Al5083 Joint, Metall. Micro. Anal., 2019, 8(5), p 713–725. https://doi.org/10.1007/s13632-019-00563-y

    Article  CAS  Google Scholar 

  37. W.B. Guo, X.S. Leng, J.C. Yan et al., Ultrasonic Soldering Aluminum at Low Temperature, Weld. J., 2015, 94(6), p 189S-195S.

    Google Scholar 

  38. W.D. Callister, Materials Science and Engineering: An Introduction, Wiley, New York, 1994.

    Google Scholar 

  39. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1989.

    Google Scholar 

  40. B. Bagheri, M. Abbasi, A. Abdollahzadeh and S.E. Mirsalehi, The Effect of Second Phase Particle Size and Presence of Vibration on AZ91/SiC Surface Composite Layer Produced by FSP, Trans. Nonferrous. Metal. Soc. Chin., 2020, 30, p 905–916. https://doi.org/10.1016/S1003-6326(20)65264-5

    Article  CAS  Google Scholar 

  41. P. Li, Zh. Lei, X. Zhang and Y. Chen, Influence of Si Content on Interfacial Reactions and Mechanical Properties of Dual-spot Laser Welded-brazed Ti/Al Joints, J. Manuf. Process., 2020, 56, p 950–966. https://doi.org/10.1016/j.jmapro.2020.06.001

    Article  CAS  Google Scholar 

  42. M. Abbasi, M. Givi and B. Bagheri, Application of Vibration to Enhance Efficiency of Friction Stir Processing, Trans. Nonferrous. Metal. Soc. Chin., 2019, 29, p 1393–1400. https://doi.org/10.1016/S1003-6326(19)65046-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimiyan Rizi, V., Abbasi, M. & Bagheri, B. Investigation on Intermetallic Compounds Formation and Effect of Reinforcing Particles during Friction Stir Vibration Brazing. J. of Materi Eng and Perform 31, 3369–3381 (2022). https://doi.org/10.1007/s11665-021-06443-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06443-3

Keywords

Navigation